Меню

Бурение и оборудование скважин при подземном выщелачивании полезных ископаемых

Аппаратура процессов выщелачивания

Поскольку кислотное выщелачивание обеспечивает высокую скорость процесса и большую степень извлечения урана, а карбонатное выщелачивание дает более высокую степень обогащения, то была сделана попытка объединить их, чтобы использовать достоинства обоих методов. Руда сначала вскрывалась серной кислотой с пиролюзитом при малой остаточной кислотности (3 — 5 г/л). При этом вскрываются первичные урановые минералы (настуран, уранинит).

Затем пульпа обрабатывалась раствором соды. Часть соды расходуется на нейтрализацию остаточной кислотности, при этом большая часть примесей переходит в осадок, а уран переходит в карбонатный комплекс и остается в растворе:

Fe 2(SO 4) 3 + 3 Na 2CO 3 + 3 H 2O = З Nа 2SO 4 + 2 Fe(OH) 3 + 3 CO 2,

A1 2(SO 4) 3 + 3 Na 2CO 3 + 3 H 2O = 3 Na 2SO 4 + 2 Al(OH) 3 + 3 CO 2

В присутствии СO 2 часть карбоната железа может перейти в раствор:

ванадий и фосфор остаются в растворе:

(VO 2) 2SO 4 + 2 Na 2CO 3 = 2 NaVO 3 + Na 2SO 4 + 2 CO 2,

2H 3PO 4 + 3 Na 2CO 3 = 2 Na 3PO 4 + 3H 2O + 3 CO 2.

После содовой обработки проводилось разделение твердой и жидкой фаз с отмывкой твердой фазы от уранового раствора.

Попытка механического объединения достоинств кислотного и карбонатного выщелачивания уменьшила эти достоинства. Выщелачивание при меньшей остаточной кислотности снизило скорость процесса, при этом степень обогащения была несколько меньше, чем при карбонатном выщелачивании. К тому же процесс многостадиен и требует большого расхода реагентов. По этим причинам комбинированный метод выщелачивания в промышленности не используется.

С точки зрения аппаратурного оформления выщелачивание осуществляется двумя методами: агитационным и перколяционным.

Более распространен агитационный метод, при котором проводится интенсивное перемешивание руды и выщелачивающих растворов механическими мешалками или воздухом. Аппараты с механическим перемешиванием чаще используют для вскрытия концентратов и отходов производства, так как они имеют сравнительно малый объем (до 75 м 3 ). Эти аппараты представляют цилиндрические емкости с плоским, сферическим или коническим днищем. Диаметр аппарата, как правило, равен его высоте. Для устранения закручивания и появления воронки в центре аппарата укрепляется циркуляционная труба (дефлектор) диаметром d = (0,1-0,2) H an, на трубе могут быть расположены отверстия по винтовой линии для циркуляции пульпы и раствора. Пропеллерная мешалка располагается у нижней открытой части трубы .

При вращении мешалки чаще всего в дефлекторе образуется восходящий поток, а вблизи корпуса аппарата — нисходящий поток. Регулярно организованная циркуляция пульпы предотвращает оседание твердых частиц пульпы на днище аппарата. Предотвращения образования воронки можно добиться также установкой продольных ребер на корпусе .

При работе аппарата в каскаде ввод и вывод рудной пульпы осуществляются через боковые штуцеры в верхней части аппарата.

Агитатор с механическим перемешиванием:
1 – пропеллерная мешалка, 2 — дефлектор

При работе в периодическом режиме способ ввода и вывода пульпы может быть иным. Вывод пульпы осуществляется через патрубок, расположенный в нижней части аппарата. Аппараты с механическим перемешиванием стандартизованы по габаритным размерам, мощности электродвигателя и частоте вращения мешалки.

Для выщелачивания бедных руд, когда перерабатываются огромные массы рудного материала, чаще используются аппараты с пневматическим перемешиванием (пачуки) большого объема (до 600 и более кубометров). Они представляют цилиндры с коническим днищем (конусность 60 °С), высота аппарата в 2 — 3 раза больше диаметра. Чаще всего в центре пачука укрепляется циркулятор, диаметр которого в 5 — 10 раз меньше диаметра пачука. Нижний конец циркулятора должен быть расположен не далее 0,5 м от днища аппарата, верхний конец циркулятора находится немного ниже уровня зеркала пульпы.

Оба конца циркулятора должны иметь раструбы с загнутыми концами — это сокращает расход энергии на перемешивание.

Снизу в циркулятор подается сжатый воздух под давлением 200-300 кПа. Плотность образующейся в циркуляторе пульповоздушной смеси значительно меньше плотности пульпы в объеме аппарата, поэтому пульповоздушная смесь вытесняется вверх, в циркуляторе создается восходящий поток, а вдоль стенок аппарата — нисходящий поток. Регулярная циркуляция предотвращает оседание твердых частиц на днище аппарата. Воздух не только перемешивает пульпу, но и аэрирует ее, способствуя осуществлению в аппарате окислительных процессов.

Для вывода пульпы из аппарата пачуки иногда снабжают дополнительным эрлифтом. При отсутствии эрлифтного подъема для организации самотека пульпы каждый последующий аппарат каскада располагают на 0,1 — 0,2 м ниже предыдущего. Расход воздуха на перемешивание составляет 1,0 — 1,2 м 3 /ч на 1 м 3 пульпы. Некоторые конструкции пачуков представлены на рисунке.

Схема аппаратов с пневматическим перемешиванием (типа пачуков) с циркулятором (а) и со свободным и транспортным эрлифтами (б):
1 – корпус, 2 – центральная циркуляционная труба, 3 – патрубок для подачи пульпы, 4 – отражатель, 5 – слив для пульпы, 6 – транспортный эрлифт, 7 – свободный эрлифт.

Расход энергии на перемешивание в пачуках несколько больше, чем в реакторах с механическим перемешиванием. Но пачуки предпочтительнее, так как они проще по конструкции, экономичнее в ремонте и обслуживании, могут применяться для вязких и грубых пульп, обеспечивают высокую производительность и аэрацию пульп.

Агитаторы могут работать как в периодическом, так и в непрерывном режиме.

При периодической работе время, необходимое для заполнения аппарата и его разгрузки, является непроизводительным.

Для аппарата вместимостью 10 — 12 м 3 оно составляет примерно 1 ч, а при объеме 40-50 м 3 — 2,5 ч. Непроизводительное время увеличивает суммарный объем аппаратов. Кроме того, при периодическом процессе требуется больше обслуживающего персонала, так как затрудняются механизация и автоматизация процесса.

Поэтому предпочитают непрерывное выщелачивание руды в каскадах аппаратов с прямоточным движением выщелачивающих растворов и твердых частиц руды. Если непрерывный процесс выщелачивания проводить в одном аппарате, когда в него поступает Q (м 3 /ч) пульпы, а через другой патрубок удаляется то же количество пульпы, то вследствие интенсивного перемешивания через разгрузочный патрубок может выводиться часть зерен руды, находившаяся в аппарате меньше времени τ (ч), необходимого для завершения вскрытия руды. Вероятность a преждевременного уноса частиц из аппарата объемом К можно определить по уравнению:

С точки зрения наименьших капитальных вложений следует принимать V= Qτ, тогда a = 1 — е -1 = 0,63. Значит, 63 % рудного материала будет выведено из аппарата раньше технологического времени х. И хотя 37 % руды будет находиться в аппарате дольше τ, суммарно преждевременный унос снизит степень выщелачивания.

Если вместо одного аппарата объемом V установить n аппаратов объемом V/n, то среднее время пребывания пульпы в каждом из них составит τ/n, а вероятность преждевременного уноса твердых частиц из каждого аппарата:

Так как частица, вышедшая из 1-го аппарата раньше τ/n, в последующих аппаратах может задержаться дольше τ/n, то с увеличением числа аппаратов степень выравнивания времени пребывания отдельных частиц в каскаде будет увеличиваться.

Для всего каскада вероятность преждевременного уноса твердых частиц будет равна произведению вероятностей преждевременного уноса для каждого аппарата:

При общем объеме аппаратов каскада V= Qτ имеем a общ = 0,63 n ; при двух аппаратах в каскаде — a общ = 0,63×0,63 = 0,4; при трех — 0,4×0,63 = 0,25; при четырех — 0,25×0,63 = 0,16; при пяти — 0,16 • 0,63 = 0,1; при десяти — 0,1 × 0,1 =0,01.

Количество аппаратов в каскаде должно быть таким, чтобы вероятность преждевременного уноса была меньше степени недовскрытия урана из руды. Если степень вскрытия составляет 98 %, то вероятность преждевременного уноса не должна превышать 2 %. Для обеспечения этого условия в каскаде должно быть не менее 9 пачуков.

На рисунке изображены прямоточные каскады из трех агитаторов.

Источник



«Бурение и оборудование скважин при подземном выщелачивании полезных ископаемых»


«Бурение и оборудование скважин при

подземном выщелачивании полезных ископаемых»

Содержание

1. Общие сведения о добычи ПИ методом подземного выщелачивания и о геотехнологических скважинах 6

1.1 Основные сведения о методе ПВ 6

1.2 Основные сведения о геотехнологических скважинах 7

1.3 Классификация геотехнологических скважин 9

2. Технология бурения геотехнологических скважин 12

2.1 Способы бурения геотехнологических скважин 12

2.2 Искривление скважин. Мероприятия по поддержанию заданного направления технологических скважин 13

3. Буровое оборудование для сооружения геотехнологических скважин 16

3.1 Основные факторы, определяющие выбор буровых агрегатов 16

3.2 Самоходные буровые агрегаты с роторными вращателями 18

3.3 Буровые установки со шпиндельными вращателями 23

4. Конструкции геотехнологических скважин для ПВ металлов 27

5. Крепление геотехнолгичеких скважин 35

5.1 Обсадные трубы для оборудования геотехнологических скважин 35

5.2 Монтаж и спуск эксплуатационных и обсадных колонн 45

6. Цементирование и гидроизоляция геотехнологических скважин 60

6.1 Назначение цементирования и гидроизоляции 60

6.2 Способы цементирования геотехнологических скважин 61

6.3 Технические средства для цементирования скважин 68

6.4 Технические средства и технология гидроизоляции зон движения рабочих и продуктивных растворов 69

7. Технология вскрытия продуктивных горизонтов 73

8. Забойное и устьевой оборудование 80

8.1 Основные требования к фильтрам 80

8.2 Типы фильтров 80

8.3 Оборудование скважин фильтрами с гравийной обсыпкой 84

8.4 Оборудование устья технологических скважин 96

9. Основные направления повышения эффективности сооружения геотехнологических скважин 104

9.1 Расширение призабойной зоны геотехнологических скважин 104

Список литературы 111

Скважинный фильтр (RU 2 284 408 С1) 112

Способ сооружения фильтровой сквадины (2 309 244 С1) 116

Скважинный фильтр (2 254 421 С1) 121

Введение

В последнее время для добычи многих твердых полезных ископаемых (ПИ) применяют геотехнологические методы добычи с использованием буровых скважин. Они позволяют упростить и удешевить добычу, производить отработку бедных месторождений, а также месторождений, характеризующихся сложными условиями залегания. Вскрытие рудной залежи осуществляют буровыми скважинами, которые предлагается называть геотехнологическими.

Геотехнологические методы добычи полезных ископаемых позволяют снизить в некоторых случаях в 2 – 4 раза капитальные затраты на строительство предприятий, повысить производительность труда по конечной продукции, сократить численность работающих. Кроме того, их применение способствует значительному улучшению условий труда и уменьшению отрицательного воздействия на окружающую среду.

Одним из геотехнологических методов является метод подземного выщелачивания (ПВ). ^ Подземное выщелачивание ПИ, метод добычи полезного ископаемого избирательным растворением его химическими реагентами в рудном теле на месте залегания с извлечением на поверхность. ПВ применяется для добычи цветных металлов и редких элементов и др. ПВ относится к фильтрационным процессам и основано на химических реакциях «твёрдое тело – жидкость».

Читайте также:  Нтд по сварочного оборудования

При ПВ проницаемых рудных тел месторождение вскрывается системой скважин, располагаемых (в плане) рядами, многоугольниками, кольцами. В скважины подают растворитель, который, фильтруясь по пласту, выщелачивает полезные компоненты. Продуктивный раствор откачивается через другие скважины. В случае монолитных непроницаемых рудных тел залежь вскрывают подземными горными выработками, отдельные рудные блоки дробят с помощью буровзрывных работ. Затем на верхнем горизонте массив орошают растворителем, который, стекая вниз, растворяет полезное ископаемое. На нижнем горизонте растворы собирают и перекачивают на поверхность для переработки.

1. Общие сведения о добычи ПИ методом подземного выщелачивания и о геотехнологических скважинах

1.1 Основные сведения о методе ПВ

Сущность подземного выщелачивания ПИ заключается в избирательном переводе полезного компонента в жидкую фазу путем управляемого движения растворителя по руде в естественном залегании или подготовленного к растворению и подъему насыщенного металлом раствора на поверхность. С этой целью через скважины, пробуренные с поверхности в пласт полезного ископаемого нагнетается химический реагент, способный переводить минералы полезного ископаемого в растворимую форму. Раствор, пройдя часть рудного пласта, через другие скважины поднимается на поверхность и далее по трубопроводу транспортируется к установкам для переработки.

Принципиальная схема подземного выщелачивания металлов приведена на рис. 1.

Рис. 1. Принципиальная технологическая схема подземного выщелачивания

В случае монолитных, непроницаемых руд выщелачивание осуществляется из горных выработок, вскрывших пласт ПИ. Раздробленную с помощью буровзрывных работ горную массу орошают растворителем, который, стекая вниз, растворяет минералы полезного ископаемого. Продуктивные растворы собираются на нижнем горизонте и перекачиваются затем на поверхность, для переработки.

Важнейшими природными предпосылками применения ПВ являются способность ПИ и его соединений переходить в раствор при воздействии на рудный пласт водного раствора выщелачивающего реагента, а также возможность фильтрации выщелачивающих растворов в породах продуктивного горизонта.

Выбор растворителя для ПВ зависит от состава руд. Наиболее широкое применение находят водные растворы кислот (серной, соляной, азотной) или соды.

ПВ применяется при добыче урановых руд, цветных и редких металлов (медь, никель, свинец, цинк, золото и др.). Имеются предпосылки использования его для добычи фосфоритов, боратов и др.

Важным фактором повышения эффективности добычи методом ПВ является правильный выбор схемы размещения технологических скважин и расстояний между ними. В практике эксплуатации месторождений в основном применяется линейная схема расположения скважин, представляющая собой чередование рядов нагнетательных и откачных скважин. Расстояния между рядами и скважинами в ряду колеблются в широких пределах (15 – 50 м и более). Наиболее широкое распространение получила схема 25х50 м.
^

1.2 Основные сведения о геотехнологических скважинах

Буровые скважины при ПВ являются ответственным сооружением и служат не только для вскрытия пластов ПИ, но и основным техническим средством в процессе добычи. Буровые скважины производят подачу рабочих агентов в зону продуктивного пласта и подъем технологических растворов на поверхность, выполняют все операции, связанные как непосредственно с процессом добычи, так и контролем за ходом этого процесса. С помощью буровых скважин производится также контроль полноты извлечения полезного компонента и охрана окружающей среды от возможного физико-химического загрязнения. Кроме того, с помощью буровых скважин уточняются данные геологической разведки (положение рудного пласта, условия залегания и др.), физико-механические и физико-химические свойства пород, создаются противофильтрационные завесы.

При ПВ руд путем воздействия кислотных, щелочных и бактериальных растворителей диаметр скважины определяется размерами раствороподъемного оборудования (эрлифты, погружные насосы и др.).

В зависимости от существующих конструкций добычных агрегатов конечные диаметры геотехнологических скважин колеблются от 150 до 400 мм.

Следует отметить, что диаметры стволов геотехнологических скважин должны определяться с учетом затрат на бурение и на добычу полезного компонента.

Известно, что при уменьшении диаметра скважин все технико-экономические показатели бурения повышаются – увеличиваются механическая и рейсовая скорости, уменьшаются энергетические затраты и трудоемкость выполнения спускоподъемных операций, снижается стоимость 1 м бурения и оборудования скважин.

С другой стороны, при увеличении размеров добычного и подъемного оборудования повышается производительность скважин и эффективность добычи. Поэтому критерием выбора диаметра скважин в конечном счете является стоимость добытой руды. Необходимо стремиться к тому, чтобы применяемое добычное оборудование при равной производительности имело бы меньшие размеры. Это позволит уменьшить диаметры скважин, снизить стоимость буровых работ, а в результате – и стоимость добычи.

Направление геотехнологических скважин выбирается с учетом характера залегания пластов полезных ископаемых. При горизонтальном залегании пластов скважины задаются вертикальными. При наклонном залегании они могут быть наклонными или направленными вдоль пласта, что может способствовать увеличению добытой руды из одной скважины. Повышению количества добытой руды из одной скважины и уменьшению стоимости, особенно при глубоко залегающих пластах, может способствовать применение многоствольного бурения. Вскрытие может осуществляться с помощью одиночных скважин и комбинированным способом.

Глубины геотехнологических скважин определяются глубиной залегания продуктивных пластов и колеблются в широких пределах – от нескольких метров до 1000 м и более.

Источник

Системы обработки выщелачиваемой руды растворами

Системы обработки выщелачиваемой руды растворами

При эксплуатации геотехнологических предприятий самые значительные расходы связаны с затратами на реагенты, поэтому снижение объемов используемых реагентов -основная задача совершенствования. Этого можно достичь с помощью правильно выбранной системы орошения и просачивания рабочих растворов через выщелачиваемую руду.

При разработке скальных месторождений выделяют следующие способы подачи растворов для выщелачивания:

Гидростатический -заполнение всего объема порового пространства выщелачивающими растворами, выстаивание в течение определенного времени и выпуск продуктивных растворов. Необходимое условие применения гидростатического способа -водонепроницаемость боковых пород, поэтому зону выщелачивания изолируют с помощью антифильтрационных экранов, эксплуатация которых и надежность связаны с известными техническими трудностями.

Фильтрационный -предполагает непрерывное движение выщелачивающих растворов сквозь межкусковое пространство при полном его заполнении, поэтому требования к вмещающим породам с точки зрения их проницаемости такие же или более жесткие, чем в предыдущем способе.

Инфильтрационный наиболее распространенный в геотехнологической практике предполагает движение выщелачивающих растворов в межкусковом пространстве при неполном его насыщении. В этом случае обеспечивается необходимое время для контакта растворителя с поверхностью рудного материала в присутствии кислорода воздуха, поэтому массообменные процессы реализуются в наиболее благоприятных физико-химических условиях. Рабочие растворы при этом способе подаются на поверхность орошаемой горной массы разбрызгиванием, затоплением, через перфорированные оросительные трубы.

Первый способ подачи растворов применяют в устойчивых породах при небольшой мощности крутопадающих рудных тел и одноэтажной отработке. Второй способ может применяться при многоэтажной отработке месторождения в самых разнообразных условиях. Третий способ особенно эффективно применяется в практике кучного выщелачивания вследствие того, что обеспечивается наиболее рациональное использование выщелачивающих растворов с точки зрения механизма физико-химической гидродинамики массопереноса.

Процесс смачивания куска руды рабочими растворами начинается с поступления раствора на его поверхность. Наиболее равномерное распределение раствора по поверхности куска обеспечивается в тех случаях, когда весь кусок оказывается в растворе. В штабеле кучного выщелачивания такие формы контакта вполне реальны для мелких частиц горной массы. Крупные куски могут омываться растворами, поступающими к куску либо снизу, либо в виде струй и капель сверху. Чаще всего растворы на воздушно-сухой или влажный кусок поступают из ранее смоченных соседних кусков горной массы. По виду обработки все системы орошения подразделяются на: разбрызгивание, распыление, затопление и рассредоточение с помощью взрыва.

Разбрызгивание может осуществляться с помощью напорных шланговых распределителей, вертикальных перфорированных труб, вращательных разбрызгивателей, эмиттеров, газонных дождевальных установок, струйных пластиковых дождевателей, разбрызгивателей типа «Сегнерово колесо».

Напорные шланговые распределители выщелачивающего раствора располагают по поверхности рудного массива (штабеля). Шланги перфорированы заданным количеством отверстий и шагом их расположения. Выщелачивающие растворы подают в шланговые системы Песковыми насосами с открытыми турбинками.

Вертикальные перфорированные трубы вводят в слой руды через равные интервалы (5-10 м). Это облегчает поступление раствора и воздуха внутрь штабеля и интенсифицирует процесс выщелачивания. Такая система введения раствора помогает снять проблему потерь раствора за счет его испарения, что особенно актуально в аридных засушливых районах, и разрешить проблемы замерзания подаваемых рабочих растворов на поверхности штабеля при отрицательных температурах окружающей среды в зимний период времени.

Вращательные разбрызгиватели бывают двух типов. Первый из них -это виглеры, то есть хирургические трубки, вставляемые в отверстия системы оросительных труб. Эти вставки приводят к хаотическому раскачиванию труб, что улучшает равномерность распределения выщелачивающего раствора по поверхности штабеля. Другой тип распределителей -это вобблеры. Они представляют собой эксцентричные разбрызгиватели вращательного типа. Их устанавливают на стальных стояках высотой не более 1.2 м. Эксцентрично вращаясь, они обеспечивают орошение крупными каплями, и это уменьшает испарение растворов. Вобблеры устанавливаются в разном количестве, определяемом плотностью орошения при заданном давлении. Нужная плотность орошения достигается правильным выбором типов разбрызгивателей, наряду с оптимальным их размещением и достаточным поддержанием в них давления.

Разбрызгиватели выбирают так, чтобы обеспечивать равную интенсивность орошения в пределах их радиуса действия. Вначале разбрызгиватели устанавливают по углам штабеля с рудой, затем их устанавливают по периметру штабеля, отступая от края, чтобы избежать разбрызгивания за пределами штабеля. Они устанавливаются на необходимом расстоянии, обеспечивающем нужное перекрытие. Затем уже устанавливают разбрызгиватели в остальной части штабеля.

Эмиттеры -это нагнетательные разбрызгиватели. Их можно сравнить с капельными оросительными системами в сельском хозяйстве. Применяемые типы эмиттеров используют принципы турбулентного потока и соединяются линейно для обеспечения равномерного распределения выщелачивающих растворов по поверхности рудного штабеля. При работе нагнетательных эмиттеров капельки раствора проходят по извилистым каналам, теряя давление и медленно высачиваясь из них. Используемые эмиттеры действуют при сравнительно низком давлении обычно от 15-20до 100-140 кПа. Часто эмиттеры погружают в руду на глубину 20-25 см, хотя установка их на поверхности тоже практикуется. Наиболее важным фактором в решении вопросов о необходимости погружения эмиттеров в рудный материал является климат района. В районах с неблагоприятным климатом в зимние месяцы эмиттеры рекомендуется погружать непосредственно в рудную массу. Размещение и количество эмиттеров рассчитывают из требуемой интенсивности орошения, примерно равной 0.003 л/сек, м2 или 11 л/час, м2. Главное преимущество использования эмиттеров заключается в обеспечении непрерывного капания раствора с минимальной силой падения. Другими преимуществами эмиттеров являются:

Читайте также:  Как настроить работу эквайринга в 1С Розница 2 3

возможность проведения работ в зимнее время;

уменьшение потерь раствора за счет испарения воды;

уменьшение разрушения поверхности.

Эти преимущества значительны, если указанные факторы включаются в расчет валовых расходов. Главный недостаток использования эмиттеров состоит в возможном отложении карбонатов кальция и шламов в небольших канальцах эмиттеров. Поэтому прудки-накопители маточников после извлечения выщелачиваемых компонентов из продуктивных растворов должны обеспечивать хорошую очистку растворов, рециркулируемых при кучном выщелачивании руды.

Разбрызгиватели типа «Сегнерово колесо» представляют собой насадку, присоединяемую к выходным патрубкам подающей трубы в виде гибких пластиковых шлангов длиной 0, 5 м. Под действием давления струи подаваемого раствора эти насадки вращаются как Сегнерово колесо и обеспечивают высокую разбрызгиваемость раствора.

Затопление может осуществляться посредством предварительного образования канавок по всей ширине площадки через равные промежутки. В канавки укладывают перфорированные трубы диаметром 100 мм. Трубы засыпают гравием и на подготовленную площадку с приемным дренажем укладывают руду с размером кусков около 25 мм, чтобы обеспечить слой высотой 6-9 м. Концы заглубленных труб соединяют двумя параллельными трубами из поливинилхлорида диаметром 150 мм, по которым продуктивные растворы после выщелачивания направляют в приемные баки.

Такие прудковые оросители эффективны в засушливом климате, где тонкое разбрызгивание при подаче выщелачивающих растворов приводит к высоким их потерям. Они могут использоваться при довольно низкой проницаемости штабеля, ограничивающей ‘фильтрацию. На очень пористом рудном материале с быстрой фильтрацией (более 30 м/сут) затопление не рекомендуется. В этом случае возможен подъем уровня раствора внутри штабеля, что может привести к его неустойчивости.

Орошение штабеля может осуществляться также путем распыления рабочих растворов в случае, если крупность выщелачиваемой руды минимальна. Для этого на распределительные устройства устанавливают форсунки. По принципу работы, форме струй и способу их распыления известны форсунки центробежные, центробежно-струйные, ударно-струйные и комбинированные.

Рассредоточение с помощью взрыва может осуществляться путем бурения скважин в массиве и заложения в них наряду со взрывчатым веществом капсул с технологическим раствором, который посредством взрыва распределяется в рудном массиве.

По расположению устройств, подающих выщелачиваемые растворы, выделяют поверхностные и внутренние, расположенные внутри штабеля, К первым относятся перфорированные трубы и шланги, равномерно уложенные на поверхности штабеля.

Системы орошения классифицируются также по направлению поступления растворов в выщелачиваемый массив. Наиболее распространенным вариантом является поступление растворов под действием сил гравитации сверху вниз. Но при создании гидравлического замка возможна смена направления миграции на противоположное.

Изменение направления миграции рабочих растворов достигается и другими путями. Например, при снижении концентрации металлов в продуктивных растворах производят кольматацию участка формирования потока реагента в зоне интенсивного выщелачивания. Данную кольматацию осуществляют через оросительные скважины, обсаженные полиэтиленовыми перфорированными трубами, которые проходят в толще выщелачиваемой руды.

При фильтрационном выщелачивании значительно большая скорость движения растворов достигается непосредственно над точками подачи растворов и уменьшается при удалении от них. Поэтому образуется так называемая «зона интенсивного выщелачивания», в которой полезный компонент быстрее переходит в раствор, чем в периферийной части инфильтрационного потока. Для устранения этого недостатка зону интенсивного выщелачивания частично кольматируют. Таким образом, создается возможность подачи выщелачивающего раствора в периферийную область инфильтрационного потока и активной ее проработки.

По способу распределения рабочих растворов выделяют обычное распределение и с рассредоточением потока. Для рассредоточения потока в массиве штабеля формируют по меньшей мере один слой мелкозернистого материала высотой 50-120 мм. В результате обеспечивается распределение гидродинамического потока по всему сечению штабеля.

На миграцию технологических растворов значительное влияние оказывает и набухание выщелачиваемого материала. Поэтому при кучном выщелачивании металлов из высоко глинистых руд необходимо учитывать то, что набухание глин носит осмотический характер и его причиной является разница в концентрации солей в поровом и окружающем породу растворах. Если концентрация внешнего раствора меньше концентрации порового -происходит набухание горной массы. Для снижения набухания глинистых руд и увеличения их проницаемости на выщелачивание необходимо подавать не «чистые» растворы, а уже имеющие начальное содержание выщелачиваемых металлов.

По типу активных агентов различают кислоты, щелочи, органические соединения и бактерии.

Процесс выщелачивания может производиться с интенсификацией или без нее. Факторы, ускоряющие выщелачивание -подогрев рабочих растворов, насыщение выщелачиваемого массива кислородом путем прокладки внутри него труб аэрационной системы и предварительная активация руды.

Режим орошения выщелачиваемого массива может быть напорным и безнапорным.

Добиваясь повышения величины извлечения полезного компонента, необходимо учитывать также содержание выщелачивающих реагентов в рабочем растворе, расход раствора и периодичность орошения штабеля. Эти факторы определяются на этапе лабораторных испытаний. Если руда не представляет трудности для фильтрации, то плотность орошения поддерживается в пределах 3.6-21.6 л/час-м2. Типовые скорости орошения колеблются в узких пределах от 7.2 до 10.8 л/час-м2.

Системы сбора продуктивных растворов

Технология подземного и кучного выщелачивания должна гарантировать предотвращение миграции выщелачивающих и продуктивных растворов в горизонты подземной гидросферы. Нередко для исключения утечки растворов в подстилающие породы в основании блоков подземного выщелачивания формируют гидроизоляционную подушку, а при кучном выщелачивании -гидроизоляционное основание.

При подземном выщелачивании сооружение гидроизоляционного основания требует проведения выработок нижней подсечки высотой 2.5-3 м, как правило, мелкошпуровым способом. Затем на почву выработки укладывают слой песка, а поверх него настилают полиэтиленовую пленку. Сверху пленку покрывают предохранительным слоем из мелкодробленой породы толщиной 0.4-0.6 м. Продуктивные растворы собирают в дренажную выработку, располагаемую под днищем камеры, стенки и подошву которой покрывают гидроизоляционным составом. Из дренажной выработки продуктивные растворы откачиваются в центральный растворосборник (или поступают туда через рудоспуски). Опыт подземного выщелачивания показывает, что в большинстве скальных пород сооружение гидроизоляционной подушки не требуется при инфильтрационном режиме. Достаточно в основании камеры пробурить разгрузочные скважины из кровли дренажной выработки. В том случае, когда гидрогеологическая ситуация в районе месторождения позволяет откачивать продуктивные растворы с уровня подземных вод и при этом не происходит загрязнения техногенными элементами, гидроизоляционные работы можно не производить.

Система сбора при помощи безнапорного подстилающего слоя дробленого рудного материала

При кучном выщелачивании для приема продуктивного раствора вокруг кучи сооружают берму с целью поддержания определенного подтопления кучи, через которую продуктивный раствор переливается как через порог в обводящую кучу канаву. На дно канавы укладывают отводящую трубу, по которой раствор передается в зумпф для откачки на карту продуктивных растворов. Скорость отвода продуктивных растворов из штабеля повышается с увеличением наклона основания кучи. В этом случае сооружение штабелей на пологих склонах имеет большие преимущества. Если найдена удобная площадка, ее ориентацию и форму можно изменять для облегчения сбора раствора так, чтобы под действием сил гравитации раствор направлялся в наиболее низкую точку с последующей отправкой на карту продуктивных растворов.

Если площадка очень крутая или слишком плоская для достижения нужного уклона может потребоваться выемка и перемещения грунта. Для оснований с крутым уклоном существуют менее дорогие варианты, чем перемещение грунта. Например, основание с переменным уклоном, когда дно площадки более плоское, чем ее верх. Кроме того, для оснований с крутым уклоном могут быть лучшим вариантом долинные или ступенчатые основания.

Трубчатый нижний дренаж для сбора продуктивного раствора Перфорированные трубы помещают внутри дренажного слоя и они способствуют сбору растворов. Кроме этого они помогают предотвратить формирование давления свободной воды на основание площадки в схемах, использующих гравитационный дренаж и уменьшают возможность потерь продуктивных растворов за счет растекания.

Дренажные трубы бывают напрямую связаны с системой труб, ведущих к картам сбора продуктивных растворов или могут быть направлены через обводную сборную канаву или сборный коллектор.

Коллекторная дренажная система в штабеле проектируется так, чтобы поддерживать зону насыщения по возможности на более низком уровне, но при этом обеспечивать постоянство и минимальный градиент потока раствора через штабель.

Сборная система должна действовать как фильтр для руды, чтобы мелкие частицы не сдвигались и не перемещались растворами в сборные трубы и траншеи.

Как и изоляция, коллекторная система должна быть химически устойчивой к выщелачивающим растворам. Это включает подбор размеров отверстий, либо установку фильтрующих устройств на отверстиях трубок и сведение к минимуму разрушения дренажного материала растворами.

Источник

Выщелачивание подземное

Схема подземного выщелачивания

ВЫЩЕЛАЧИВАНИЕ ПОДЗЕМНОЕ (а. underground leaching; н. Untertage- Auslaugung; ф. ljxiviation en place; и. lixiviacion subterranea) — способ разработки рудных месторождений избирательным переводом полезного компонента в жидкую фазу в недрах с последующей переработкой металлсодержащих (продукционных) растворов. Промышленное освоение выщелачивания подземного медных руд было осуществлено в США в 1919, в CCCP (на Урале) — в 1939. С 60-х годов выщелачивание подземное применяют для добычи урана. В 70-х годах во многих странах (CCCP, США, Канада, ГДР, ЧССР, НРБ и др.) значительная часть урана и меди добывается выщелачиванием подземным, ведутся экспериментальные работы по применению его для добычи титана, ванадия, марганца, железа, кобальта, никеля, цинка, селена, молибдена, золота и других металлов. Выщелачивание подземное позволяет полнее использовать недра за счёт вовлечения в производство бедных руд, добыча и переработка которых традиционными способами нерентабельна.

При выщелачивании подземном металл извлекается путём ионного обмена в процессе управляемого движения реагента через массив с естественной проницаемостью предварительно разрушенной различными методами или замагазинированной руды. Главные условия успешного применения выщелачивания подземного: присутствие полезного компонента в соединениях, растворимых минеральными или органическими кислотами, щелочами, растворами солей; достаточная естественная водопроницаемость руд или возможность её создания искусственным путём, благоприятные горнотехнические и гидрогеологические условия, позволяющие осуществить подачу реагента к руде и откачку продукционных растворов; возможность эффективного извлечения полезных компонентов из продукционных растворов.

Читайте также:  Преимущества заказа оборудования для производства цемента у нас

Реклама

По режиму движения реагента выделяют 3 гидродинамические схемы выщелачивания подземного: фильтрационную, инфильтрационную и пульсационно-статическую (возможны комбинации этих схем в условиях одного добычного блока). Фильтрационная схема выщелачивания подземного основана на использовании постоянного или периодически действующего фильтрационного потока реагента, заполняющего все трещины и открытые поры руд (пустоты в замагазинированной руде), движущегося за счёт разности напоров у раствороподающих (закачных) и раствороприёмных (откачных, дренажных) устройств (горных выработок или скважин). Инфильтрационная схема основана на использовании инфильтрационного потока реагента, движение которого по руде происходит под действием сил гравитации от оросительных устройств к дренажным (при этом раствор не заполняет полностью пустоты в руде). Пульсационно-статическая схема заключается в периодическом затоплении выщелачивающим реагентом руд с естественной и искусственно созданной водопроницаемостью, камер с замагазинированной рудой, очистных пространств с последующим выпуском продукционных растворов.

Современное предприятие выщелачивания подземного состоит из добычного, трубопроводного и перерабатывающего комплексов. Принципиальная технологическая схема цепи аппаратов предприятия не зависит от применяемой системы разработки (рис. 1), под которой понимают согласованную совокупность устройств и выработок, проведённых в определенном порядке во времени и пространстве для управляемого химико-технологического процесса перевода металла из руды в раствор и выдачи продукционного раствора для извлечения металла. В зависимости от способа вскрытия залежей выделяют скважинные, шахтные, комбинированные системы выщелачивания подземного.

Скважинные системы подземного выщелачиванияПри скважинных системах выщелачивания подземного вскрытие, подготовку месторождений и извлечение полезных компонентов в раствор осуществляют через скважины, пробуренные с поверхности. Этими системами разрабатываются месторождения урана, приуроченные к обводнённым осадочным породам. Ведутся экспериментальные работы для внедрения их на месторождениях руд золота, марганца, железа и др. В зависимости от фильтрационных свойств руд различают скважинные системы выщелачивания подземного металлов из руд с естественной проницаемостью (коэффициент фильтрации Кф 0,5-10 м/сутки), искусственной проницаемостью (Кф 0,01-0,5 м/сутки) и магазинированием руд (Кф 10 м/сутки).

Наибольшее распространение получили скважинные системы выщелачивания подземного металлов из руд с естественной проницаемостью; разрабатывают месторождения, не требующие предварительной подготовки руд (создание искусственной трещиноватости, проведение гидроразрыва пород и др.). При этом применяют скважинные системы с площадным (ячеистым) и линейным расположением скважин (рис. 2). Расстояние между скважинами 15-50 м, глубина разработки до 500 м и более. Процесс выщелачивания осуществляют в основном напорным фильтрационным потоком реагента, движущимся по рудоносному водопроницаемому пласту от закачных скважин к откачным. При этом соблюдают баланс откачиваемых и закачиваемых растворов (SQo = SQз). В этом случае система работает в стационарном режиме фильтрации, обеспечиваются максимальная локализация зоны циркуляции растворов, минимальное их разубоживание, минимальные потери реагента за счёт растекания, исключаются осложнения в работе растворо-подъёмных устройств. Выщелачивание металла из несвязных песчаных руд осуществляют при низких гидравлических градиентах (I 10 м/сутки). Режимы движения выщелачивающего реагента и конструктивное оформление шахтных систем выщелачивания подземного зависят от физико-механических свойств рудоносных и вмещающих пород, мощности и морфологии рудных тел, наличия водоупоров в кровле и почве рудоносных пород и других факторов. Применяют все три указанные выше гидродинамические схемы. Шахтные системы выщелачивания отличаются большим разнообразием, они позволяют вести управляемый процесс извлечения металлов на месторождениях различных генетических типов из руд с естественной водопроницаемостью (рис. 3) и из руд, разрушенных различными методами или отбитых и замагазинированных на месте залегания (рис. 4). Эти системы применяют при разработке глубокозалегающих месторождений, представленных бедными слабопроницаемыми или практически водонепроницаемыми рудами. При этом в производство вовлекаются большие запасы забалансовых руд, разработка которых традиционными способами нерентабельна. При применении шахтных систем выщелачивания подземного исключается массовое сдвижение руд и вмещающих пород, полностью отсутствует обрушение или оседание дневной поверхности над зонами разработки. Это объясняется тем, что отбойку руд, как правило, ведут в зажатой среде с небольшим коэффициентом разрыхления (Краз 1,1-1,2).

Шахтная система выщелачивания металла с отбойкой и магазинированием руды

Комбинированные системы выщелачивания подземного находят всё большее применение на месторождениях руд радиоактивных и цветных металлов. Выделяют комбинированные системы двух классов: из элементов скважинных и шахтных систем выщелачивания подземного; из элементов традиционных систем разработки и шахтных систем выщелачивания. Первые предусматривают разработку месторождений с подачей реагента к руде по скважинам, пробуренным с поверхности, и приёмом продукционных растворов в горной выработке. Такие системы применяют на месторождениях, где по каким-либо причинам технически трудно или нерационально откачивать продукционные растворы через скважины (при большой глубине пьезометрического уровня подземных вод, в условиях осушенных пород и т.п.). В зависимости от конкретных условий дренажные горные выработки могут быть пройдены по почве выше или ниже рудного пласта (залежи). Системы второго класса применяют при разработке залежей, которые в пределах одного блока представлены рудами разных технологических сортов, например карбонатными и силикатными, требующими при выщелачивании подземном различных реагентов; рудами, контрастными по содержанию металла (балансовыми и забалансовыми); рудами с контрастными фильтрационными свойствами, требующими разной предварительной горной подготовки к выщелачиванию подземного. Залежи в пределах блока разрабатывают в два этапа: вначале очистная выемка руды одного сорта, затем выщелачивание подземное руды другого сорта. Такая последовательность обеспечивает при очистной выемке нормальные условия труда для горнорабочих и устойчивость рудного массива. В зависимости от конкретных условий в комбинированных системах могут быть применены все три гидродинамические схемы. Комбинированные системы разработки позволяют полнее использовать недра и снижать себестоимость продукции.

Для интенсификации процесса выщелачивания подземного в зависимости от условий применяют различные химические (окислители, поверхностно-активные вещества), бактериальные, физические (электромагнитные поля, повышение напора и температуры растворов, гидроразрыв пород, встряхивающие взрывы, вакуумирование) и комбинированные методы.

Источник

ПОДЗЕМНОЕ ВЫЩЕЛАЧИВАНИЕ ПОЛЕЗНЫХ ИСКОПАЕМЫХ

date image2015-03-20
views image4376

facebook icon vkontakte icon twitter icon odnoklasniki icon

Наиболее широко подземное выщелачивание применяется при добыче урана. В первую очередь это относится к месторождениям гидрогенного генезиса, представленным бедными или убогими рудами, а также месторождениям, залегающим в сложных горно-геологических и гидрогеологических условиях.

Метод подземного выщелачивания (ПВ) начал разрабатываться с 1962 г. Подземное выщелачивание — геотехнологический способ добычи урана путем избирательного его растворения химическими реагентами из руд на месте их залегания и последующего извлечения из урансодержащих растворов.

На некоторых месторождениях построены предприятия и ведется добыча урана способом подземного выщелачивания. На ряде месторождений проведены опытно-промышленные работы по добыче урана этим способом. На отдельных предприятиях ПВ стало основным методом добычи урана. Несомненно, что число таких предприятий будет увеличиваться с увеличением добычи урана.

Основными преимуществами способа ПВ перед традиционными открытой и подземной разработкой являются:

1) вовлечение в разработку бедных, убогих и забалансовых руд, а также месторождений, характеризующихся сложными условиями залегания и имеющих крупные запасы урана по вполне приемлемой стоимости единицы конечной продукции, что значительно расширяет сырьевую базу;

2) снижение в 2—4 раза капитальных вложений на строительство предприятий и, следовательно, сокращение сроков строительства;

3) повышение в 2—4 раза производительности труда по конечной продукции и соответствующее сокращение численности работающих;

4) значительное улучшение условий труда на предприятиях, добывающих уран;

5) уменьшение отрицательного воздействия на окружающую среду, особенно на поверхность земли и воздушный бассейн.

Обзор способов подземного выщелачивания при добыче полезных ископаемых изложен в ряде публикаций.

Разработка месторождения способом подземного выщелачивания возможна при следующих основных условиях:

♦ подлежащий извлечению металл присутствует в рудах в форме минералов, легко разрушающихся слабыми водными растворами выщелачивающего реагента;

♦ входящие в состав руд породообразующие материалы имеют низкую кислотоемкость в условиях взаимодействия с технологическими растворами;

♦ руды либо обладают естественной проницаемостью, либо становятся растворопроницаемыми после искусственного раздробления;

♦ условия залегания руд и горно-техническая обстановка в районе месторождения могут быть рационально использованы для осуществления всех процессов геотехнологии.

Хорошая растворимость в подземных водах минералов, содержащих уран, отмечена еще В.И. Вернадским. Среди урановых минералов в месторождениях, отрабатываемых способом ПВ, следует отметить: оксиды урана — настуран и уранинит; силикаты урана — коффинит и ненадкевит. Главнейшим из них является настуран.

Все многообразие урановых месторождений классифицируется по технологическим группам, типам и подтипам, как это приведено в табл. 7.1.

При ПВ необходимо соблюдать баланс откачиваемых и закачиваемых растворов, т.е. суммарные расходы откачных и закачных скважин должны быть одинаковы ( ). При продуктивные растворы разубоживаются за счет привлечения пластовых вод из безрудной части месторождения.

При происходит утечка закачиваемого в пласт технологического раствора за пределы рудной залежи. Несоблюдение баланса, как следует из сказанного, недопустимо.

Система разработки месторождения (или его части) способом ПВ — совокупность вскрывающих, подготовительных выработок и определенный порядок их проведения и эксплуатации, увязанный во времени и пространстве с управляемым химико-технологическим процессом перевода металла из руды в раствор.

Системы ПВ различаются между собой по большому числу признаков, но важнейшими из них являются: принципиальные схемы вскрытия месторождений, способы подготовки рудных залежей к выщелачиванию (с естественной или искусственной проницаемостью), а также схемы движения растворов.

Схемы вскрытия ПВ можно подразделить на скважинные с поверхности, шахтные и комбинированные. Шахтные схемы вскрытия предусматривают проведение подземных горных выработок с поверхности (вертикальные и наклонные стволы, штольни). При комбинированных схемах вскрытия используются как подземные горные выработки, так и скважины, пробуренные с поверхности. Очевидно, что последние два вида схем вскрытия не вполне соответствуют определению геотехнологических способов и в дальнейшем не рассматриваются. Процесс подготовки месторождений к отработке способом ПВ через скважины, пробуренные с поверхности, включает, кроме бурения и обвязки скважин поверхностными коммуникациями, оснащение узлов рабочим (технологическим и контрольно-измерительным) оборудованием и приборами. Подготовка рудных залежей к выщелачиванию включает также первую стадию закисления эксплуатационного блока, создание временных гидрозавес для ограничения движения или направления растворов и в ряде случаев расчленение рудовмещающих пород гидроразрывом.

Классификация урановых месторождений, отрабатываемых
способом подземного выщелачивания

Источник