Меню

Статья Как тестировать электронику на производстве анализ современных технологий

5. Методы оценки технического состояния оборудования

материал предоставил СИДОРОВ Александр Владимирович

5.1. Общее понятие об оценке технического состояния оборудования

Техническое состояние – состояние оборудования, которое характеризуется в определенный момент времени при определённых условиях внешней среды значениями параметров, установленных регламентирующей документацией [1].

Контроль технического состояния – проверка соответствия значений параметров оборудования требованиям, установленным документацией, и определение на этой основе одного из заданных видов ТС в данный момент времени.

В зависимости от необходимости проведения ТОиР различают следующие виды ТС [2]:

  • хорошее – ТОиР не требуются;
  • удовлетворительное – ТОиР осуществляются в соответствии с планом;
  • плохое – проводятся внеочередные работы по ТОиР;
  • аварийное – требуется немедленная остановка и ремонт.

С целью установления фактического ТС оборудования, выявления дефектов, неисправностей, других отклонений, которые могут привести к отказам, а также для планирования проведения и уточнения сроков и объёмов работ по ТОиР проводятся технические обследования (осмотры, освидетельствования, диагностирование). Технические обследования оборудования, эксплуатация которого регламентируется нормативными актами, проводится в порядке, установленном соответствующими нормативными актами.

Технический осмотр – мероприятие, выполняемое с целью наблюдения за ТС оборудования.

Техническое освидетельствование – наружный и внутренний осмотр оборудования, испытания, проводимые в срок и в объёмах, в соответствии с требованиями документации, в том числе нормативных актов, с целью определения его ТС и возможности дальнейшей эксплуатации.

Техническое диагностирование – комплекс операций или операция по установлению наличия дефектов и неисправностей оборудования, а также по определению причин их появления.

5.2. Методы оценки технического состояния оборудования

Различают субъективные и объективные методы оценки ТС оборудования.

Под субъективными (органолептическими) методами подразумеваются такие методы оценки ТС оборудования, при которых для сбора информации используются органы чувств человека, а также простейшие устройства и приспособления, предназначенные для увеличения чувствительности в рамках диапазонов, свойственных органам чувств человека. При этом для анализа собранной информации используется аналитико-мыслительный аппарат человека, базирующийся на полученных знаниях и имеющемся опыте. К субъективным методам оценки ТС относят визуальный осмотр, контроль температуры, анализ шумов и другие методы.

Под объективными (приборными) методами подразумеваются такие методы оценки ТС, при которых для сбора и анализа информации используются специализированные устройства и приборы, электронно-вычислительная техника, а также соответствующее программное и норма-тивное обеспечение. К объективным методам оценки ТС относятся вибрационная диагностика, методы неразрушающего контроля (магнитный, электрический, вихретоковый, радиоволновой, тепловой, оптический, радиационный, ультразвуковой, контроль проникающими веществами) и другие.

5.3. Порядок и особенности проведения визуального осмотра оборудования

Порядок проведения осмотров оборудования основывается на последовательном обследовании его элементов по кинематической цепи их нагружения, начиная от привода до исполнительного элемента. Для этого необходимо знать конструкцию оборудования, состав и взаимодействие его элементов.

Вначале проводится общий осмотр оборудования и окружающих его объектов. При общем осмотре изучается картина состояния оборудования. Общий осмотр может носить самостоятельный характер и применяется при периодических осмотрах оборудования технологическим персоналом.

Под детальным понимается тщательный осмотр конкретных элементов оборудования. Детальный осмотр в зависимости от требований соответствующих нормативных и методических документов, проводится в определённом объёме и порядке. Во всех случаях детальному осмотру должен предшествовать общий осмотр.

Общий и детальный осмотр могут проводиться при статическом и динамическом режиме оборудования. При статическом режиме элементы оборудования осматриваются в неподвижном состоянии. Осмотр оборудования при динамическом режиме проводится на рабочей нагрузке, холостом ходу и при тестовых нагружениях (испытаниях).

Осмотр оборудования при включении или остановке механизма ориентируется в основном на контроль качества затяжки резьбовых соединений, отсутствие трещин корпусных деталей, целостность соединительных элементов. В рабочем режиме дополнительно проверяются биения валов, муфт, утечки смазочного материала, отсутствие контакта подвижных и неподвижных деталей.

При осмотре могут быть применены три основных способа: концентрический, эксцентрический, фронтальный. При концентрическом способе (рисунок 5.1) осмотр ведётся по спирали от периферии элемента к его центру, под которым обычно понимается средняя условно выбранная точка. При эксцентрическом способе (рисунок 5.2) осмотр ведётся от центра элемента к его периферии (по развёртывающейся спирали). При фронтальном способе (рисунок 5.3) осмотр ведётся в виде линейного перемещения взгляда по площади элемента от одной его границы к другой.

Концентрический способ осмотра детали

Рисунок 5.1 – Концентрический способ осмотра детали

Эксцентрический способ осмотра детали

Рисунок 5.2 – Эксцентрический способ осмотра детали

Фронтальный способ осмотра детали

Рисунок 5.3 – Фронтальный способ осмотра детали

При выборе способа осмотра учитываются конкретные обстоятельства. Так, осмотр помещения, где установлено оборудование, рекомендуется проводить от входа концентрическим способом. Осмотр элементов круглой формы целесообразно вести от центра к периферии (эксцентрическим способом). Фронтальный осмотр лучше применять, когда осматриваемая площадь обширна и её можно разделить на полосы.

Под идентификацией дефектов и повреждений подразумевается отнесение неисправностей к определённому классу или виду (усталость, износ, деформация, фреттинг-коррозия и т.п.). Идентифицируя дефект или повреждение, зная его природу, специалист в дальнейшем может определить причины появления неисправности и степень её влияния на ТС оборудования. Идентификация выявленных дефектов и повреждений осуществляется путём сравнения их характерных признаков с известными образцами или описаниями, которые для удобства пользования могут собираться и систематизироваться в иллюстрированных каталогах (таблица 5.1).

Таблица 5.1 – Пример каталога (базы данных) описаний неисправностей, дефектов и повреждений

Завершающая стадия заключается в дополнительном осмотре элементов оборудования для уточнения ранее полученных результатов и их регистрации в отчётных формах.

Регистрационные формы – это определённый порядок записи результатов опроса, собственно осмотра и дополняющие их графические изображения деталей и объекта в целом: рисунки, эскизы, чертежи, фотоснимки и т.п. На графических изображениях должны обозначаться точка начала осмотра и его направление, места расположения обнаруженных дефектов и повреждений.

Формализация результатов проведения осмотра осуществляется протоколом осмотра. В протоколе осмотра отражается то, что специалист имел возможным обнаружить при осмотре, в том виде, в котором обнаруженное наблюдалось. Выводы, заключения, предположения специалиста о причинах возникновения дефектов и повреждений остаются за рамками протокола и обычно оформляются отдельным актом или отчётом. Не заносятся в протокол и сообщения лиц о ранее обнаруженных отклонениях, а также произошедших до прибытия специалиста изменениях обстановки. Такие сообщения оформляются самостоятельными протоколами.

К составлению протокола осмотра надо подходить с учётом того, что он может выступать в качестве самостоятельного документа. В этих целях протокол составляется краткими фразами, дающими точное и ясное описание осматриваемых объектов. В протоколе употребляются общепринятые выражения и термины, одинаковые объекты обозначаются одним и тем же термином на протяжении всего протокола. Описание каждого объекта осмотра идёт от общего к частному (вначале даётся общая характеристика осматриваемого оборудования, его расположение на месте осмотра, а затем описывается состояние и частные признаки). Полнота описания объекта определяется предполагаемой значимостью и возможностью сохранения данных. Фиксируются все имеющиеся признаки дефектов и особенно те, которые могут быть со временем утрачены. Каждый последующий объект описывается после полного завершения описания предыдущего. Объекты, связанные между собой, описываются последовательно с тем, чтобы дать более точное представление об их взаимосвязи. Количественные величины указываются в общепринятых метрологических величинах. Не допускается употребление не-определённых величин («вблизи», «в стороне», «около», «рядом», «почти», «недалеко» и пр.). В протоколе отмечается факт обнаружения каждого из следов и предметов, в отношении каждого объекта указывается, что было с ним сделано, какие средства, приёмы, способы были применены. При описании оборудования и отдельных его элементов в протоколе приводятся ссылки на планы, схемы, чертежи, эскизы и фотографии. Каждый осматриваемый элемент оборудования должен иметь отдельную запись о результатах его осмотра. Выводы протокола должны содержать информацию о наличии и характере дефектов, а при невозможности его установления – о необходимости последующего проведения идентификации. [3]

Читайте также:  Крупнейшие заводы по производству телекоммуникационного оборудования

Источник



Статья «Как тестировать электронику на производстве: анализ современных технологий»

Финальный этап создания электронного продукта — серийное производство, именно оно в конечном итоге определяет качество устройства. Пользователь не сможет оценить идеальную программную и аппаратную платформу новой электроники, если на сборочном конвейере произойдет сбой, поэтому контроль функциональности и тестирование сборки — обязательные этапы массового производства.

Читатели этой статьи познакомятся с основными методиками и задачами тестирования электронных устройств и получат общее понимание обеспечения качества на производстве. Особое внимание будет уделено достоинствам и недостаткам различных методов тестирования.

Виды тестирования на производстве. Краткий обзор

В общем виде процесс подготовки и тестирования электронного изделия на производстве выглядит так:

  • Проектирование и создание стенда для прошивки и тестирования с использованием JTAG/ICT-тестирования
  • Разработка системы тестов и параметров контроля качества и приемки на производстве
  • Автоматизированная или ручная проверка функциональности

Тестирование устройства и его отдельных частей в процессе производства можно реализовать на базе следующих методик и технологий:

1. Визуальный автоматизированный контроль (AOI, AXI) — это предварительная проверка качества, которая используется на любом контрактном производстве, она проходит на разных стадиях монтажа печатных плат, в том числе с использованием рентгеновского излучения для проверки невидимых глазу или стандартным оптическим системам мест.

2. Внутрисхемное тестирование (ICT/FICT) – проверка соединений и компонентов на печатной плате, анализ электрических параметров всей схемы либо отдельных ее участков.

Данный метод использует контакт пробников с узлами собранной платы: это может быть как стационарное поле контактов («ложе гвоздей», англ. – bed of nails), так и «летающие щупы» (flying probe) или «летающие матрицы». Часто требует использования сложного и дорогостоящего оборудования, технологической подготовки, изготовления специальной оснастки.

3. Периферийное/граничное сканирование (boundary scan) — тестирование с использованием JTAG. Основано на использовании в микросхемах поддержки стандарта IEEE 1149.

4. Функциональное тестирование (FCT) — проверка собранных или частично собранных устройств на выполнение заданной функциональности и на соответствие параметрам, которые заложены в спецификации на прибор.

Все перечисленные методики позволяют оценить качество электроники в процессе производства, однако в некоторых случаях тестирование устройства проводится только на финальном этапе. Это так называемое тестирование после окончательной сборки (EOL) — проверка функциональности и соответствия спецификации. Оценивается не только качество, но также стабильность и надежность устройства. Такой анализ электроники проходит с использованием сложного стендового оборудования, которое имитирует систему, в составе которой работает тестируемое устройство. Если по результатам такой проверки процент брака превышает предварительную оценку, тогда корректируется технология производства и запускается очередная пробная партия устройств. И так в несколько итераций.

На практике лучшие результаты показывают те методики, которые используются в процессе производства, т.е. функциональное и внутрисхемное тестирование, т.к. они позволяют оперативно получить информацию и определить конкретные этапы, на которых появляются проблемы. Благодаря этому можно внести корректировки в производственный процесс еще до окончательной сборки устройства.

Рассмотрим эти методики тестирования более подробно, от общего к частному, начиная с анализа функциональности собранных или частично собранных устройств и заканчивая особенностями внутрисхемного тестирования печатных плат.

Функциональное тестирование на производстве

Функциональное тестирование может проводиться как в ручном, так и в автоматическом режиме. Естественно, при составлении тест-планов ручной труд стараются свести к минимуму, оставив оператору лишь подключение/отключение устройства, а также контроль годности.

При грамотном подходе эта методика способна охватить практически всю функциональность устройства за рекордно короткие сроки. Однако без разработки тестового программного обеспечения и изготовления специальной оснастки тут не обойтись.

Тестирование можно разделить на проверку основных частей устройства (процессора, памяти, прочих модулей) и проверку периферийных интерфейсов. Для тестирования процессорной части создается специальная программа, которая в автоматическом режиме задает особые параметры работы, проводит инициализацию всех микросхем устройства, опрашивает их и на основе полученных результатов делает вывод о работоспособности. После проверки основных частей проводится последовательное включение рабочего режима для каждой составной части устройства и проверка её функционала. Например, для тестирования Ethernet-интерфейсов программа поочередно проводит инициализацию каждого порта, а если их несколько, задает временные MAC- и IP-адреса, пересылает пакеты и анализирует результат.

Степень покрытия изделия тестами определяется индивидуально для каждого типа устройства на основе анализа электрической схемы, доступных для тестирования модулей и интерфейсов.

Выше приведена схема стенда функционального тестирования собранных устройств. Он позволяет тестировать пять устройств одновременно, последовательно проверяя весь функционал каждого. В процессе сверяются версии прошивки отдельных модулей, и, в случае необходимости, проходит прошивка свежей версии. После удачного прохождения тестов программа выдает устройству MAC-адрес, серийный номер и предустановленные пароли.

Стенды функционального тестирования могут включать вспомогательные программные и аппаратные средства для персонализации устройства, удаленного сбора информации о тестируемых устройствах, генерации отчетности о дефектах.

К неоспоримым плюсам функционального тестирования можно отнести возможность конечной прошивки, проверку и обновление версий ПО модулей системы, выдачу персональных данных устройству, используя высокоуровневые протоколы и скоростные интерфейсы.

Стенды функционального тестирования могут встраиваться в автоматизированные системы предприятия (производства) и обеспечивать учет и сбор статистической информации с производственных участков и ОТК.

Основные недостатки данного способа проверки устройств — это необходимость изготовления специализированной оснастки и написание программного обеспечения, также функциональное тестирование, в отличие от периферийного сканирования, не дает точного указания на дефектные цепи и выводы компонентов. Но в большинстве случаев проведение этих работ оправдано за счет максимального покрытия и короткого времени тестирования.

Тестирование электронных устройств на производстве методом периферийного сканирования

Теперь мы рассмотрим следующую методику тестирования, которая позволяет контролировать качество монтажа и отбраковывать устройства ещё до стадии функционального тестирования. Это JTAG-тестирование.

Тесты для периферийного сканирования (boundary-scan) позволяют повысить качество разрабатываемых устройств и экономить затраты на этапе серийного производства. Основное преимущество этой технологии — возможность тестирования устройств c ограниченным доступом к выводам микросхем в корпусах BGA, COB и QFP.

В последнее время в связи с большим распространением стандарта JTAG и, соответственно, микросхем с его поддержкой, метод периферийного сканирования становится все более доступным.

Производители микросхем сопровождают свои продукты BSDL-файлами, в которых содержится информация об архитектуре регистров периферийного сканирования. Современные программные средства для JTAG-тестирования позволяют автоматизировать процесс, используя данные схематики из САПР. Все это упрощает подготовку и использование JTAG-тестирования.

При проектировании электронных устройств, требуется предварительная подготовка схемы изделия. Как минимум, это использование компонентов, поддерживающих стандарт IEEE 1149.1, правильное соединение этих компонентов, вывод JTAG-портов на внешние контакты или разъемы.

JTAG-тестирование позволяет выявить «непропай» ввыводах цифровых микросхем с разными типами корпусов, включая BGA, замыкания, обрывы, а также нерабочие микросхемы с цифровыми интерфейсами. Очень важно выявить все эти дефекты, так как если непроверенная плата переходит на этап программирования, могут возникнуть проблемы с запуском памяти и периферии. При этом будет сложно установить причину неполадок: неверные настройки ПО или дефект монтажа. JTAG-тестирование позволяет предупредить эту проблему.

Читайте также:  Конструктивные особенности культиваторов Prorab

Тем не менее, у JTAG-тестирования есть свои недостатки. Во-первых, это невысокая производительность по сравнению с функциональным тестированием. Во-вторых, метод предназначен для тестирования цифровой электроники, соответственно исключаются аналоговые части устройства. В третьих, важно учитывать, что JTAG-тестирование проверяет только целостность связей, но не их качество. Импеданс, паразитная емкость и т.д. — все эти качественные параметры могут существенно повлиять на работу высокоскоростных схем.

Также JTAG-тестирование имеет ряд других ограничений:

  • Невозможно обнаружить дефекты монтажа, связанные с цифровыми или аналоговыми элементами, которые не имеют JTAG-поддержки, также недоступна диагностика дефектов связей между ними.
  • Невозможно выполнить функциональные тесты или тесты, направленные на обнаружение неисправностей, которые являются той или иной функцией времени.
  • Невозможно выполнить тесты, направленные на обнаружение таких дефектов шин данных, как, например, как дрожание фазы (jitter), паразитные связи (crosstalk), интерференция и т.д. (тесты для шины PCI).

Но в то же время JTAG-тестирование обладает серьезными преимуществами. Это глубокий анализ работоспособности микросхем и модулей для выборочной проверки электронных устройств в промышленной партии. Это важное дополнение, а в некоторых случаях — замена внутрисхемного тестирования с помощью «ложа гвоздей» или «летающих щупов». JTAG позволяет оптимизировать оборудование для полноценного тестирования либо сократить время на тестирование при комплексном подходе, когда оно используется совместно с другими методами.

Также по мере роста требований к миниатюризации электронных устройств JTAG-тестирование позволяет уменьшить габариты печатной платы, уйдя от необходимости размещать на ней группы контактных площадок для внутрисхемного тестирования с помощью «ложа гвоздей».

Внутрисхемное тестирование

Хотя периферийное сканирование по технологии JTAG набирает все большую популярность, классический метод внутрисхемного тестирования, который начал развиваться с 70-х – 80-х годов 20 века, успешно применяется до сих пор.

Внутрисхемное тестирование — технология проверки отдельных компонентов на плате или фрагментов схем с использованием специального оборудования (ICT-станций) и оснастки (игольчатого адаптера). Благодаря этой методике тестирования можно анализировать отдельные компоненты и аналоговые части схем. А также успешно применять на крупносерийном производстве. Т.е. в тех случаях, когда другие современные технологии не справляются.

Условно внутрисхемное тестирование можно разделить на аналоговое и цифровое. При аналоговом внутрисхемном тестировании обычно проверяются следующие характеристики:

  • наличие коротких замыканий и обрывов;
  • номиналы дискретных компонентов (резисторов, конденсаторов, индуктивностей, дискретных полупроводниковых приборов);
  • наличие и правильность установки микросхем.

Этот метод тестирования позволяет обнаружить большое количество дефектов сборки, поэтому аналоговое внутрисхемное тестирование часто называют анализом производственных дефектов.

При цифровом внутрисхемном тестировании цифровые микросхемы проверяются на соответствие таблице истинности.

Поскольку данная технология основана на физическом контакте иголок с контактами тестируемых компонентов, возникает ряд трудностей при реализации этого подхода в тестировании.

Постоянная миниатюризация компонентов приводит, в том числе, к уменьшению физических размеров контактных площадок и их перемещению их под корпус. Также в многослойных печатных платах значительное количество соединений реализовано во внутренних слоях. Все это приводит к необходимости вывода контактных площадок для ICT-адаптера на одну из сторон платы, что в свою очередь вызывает увеличение ее габаритов и усложняет их трассировку, а зачастую, в случае высокочастотных шин, это невозможно в принципе.

Один из вариантов решения этих проблем является использование метода тестирования «летающими щупами» или «летающими матрицами». Этот подход позволяет уйти от необходимости вывода специальных контактных площадок для тестирования, но значительно увеличивает время проверки, что является существенным ограничением для серийного производства.

Другой и, наверное, основной способ оптимизации технологии внутрисхемного тестирования без ущерба к плотности покрытия тестами печатной платы и ко времени тестирования — комплексный подход, который заключается в совмещении классического ICT-тестирования с JTAG-тестированием. Такой подход, при предварительном расчете покрытия печатной платы тестами и распределении их между JTAG и ICT, позволяет минимизировать число площадок для иголок ICT и, соответственно, упростить и удешевить тестопригодную плату. Применение таких методов требует соответствующего подхода при проектировании электронного устройства, анализа тестопригодности электрических схем, их корректировки.

Выводы

Таким образом, мы можем сформировать основные критерии, которые определяют выбор методики тестирования:

  1. Масштабность производства.
  2. Сложность продукта.
  3. Наличие особых требований к качеству (пример: электроника ответственного применения).

Так, например, для сравнительно простых устройств в малых партиях достаточно использовать функциональное тестирование, а для простой электроники в крупных сериях — внутрисхемное тестирование, т.к. оно обеспечивает максимальную скорость. Для тестирования цифровой электроники с поддержкой технологии JTAG оптимальным выбором будет периферийное сканирование, оно позволяет отладить процесс производства и скорректировать его на ранних этапах.

При планировании массового производства необходимо учитывать производительность всех методов тестирования, и, соответственно, такое их сочетание, чтобы получить минимальное время на тестирование одного устройства при максимальном покрытии тестами. Например, во многих случаях тестирование с помощью «ложа гвоздей» и периферийное сканирование, являются предпочтительными методами по сравнению с функциональным тестированием и тестированием «летающими щупами» с точки зрения скоростных характеристик.

Соответственно, именно комплексное тестирование электроники на производстве, т.е. совмещение различных технологий в грамотной пропорции сегодня является оптимальным вариантом проверки и анализа качества. По этой причине на первый план выходит предпроектный анализ тестопригодности и покрытия тестами. Он позволяет изначально спланировать и обосновать применимость и степень использования описанных выше подходов в каждом конкретном проекте.

Источник

Тестирование оборудования в i режиме

Тестовый режим в Windows — это режим, позволяющий установить драйверы без цифровой подписи, обычно это требуется для работы различного специфического оборудования. Данный режим может работать как на обычных версиях Windows, так и на серверных Windows Server. Бывает, что в правом нижем углу появляется надпись «Тестовый режим», или «Test mode», рассмотрим как эту надпись можно убрать, или наоборот включить, если Вам нужен тестовый режим для установки драйверов без цифровой подписи.

Отключить тестовый режим: (Данная инструкция подходит для всех версий Windows и Windows Server)

— Заходим в командную строну от имени администратора. Сделать это можно путем ввода в поиск cmd = > Запуск от имени администратора

— Вводим в окне консоли: bcdedit.exe -set TESTSIGNING OFF

— Нажимаем Enter и перезагружаемся. После перезагрузки надпись «Тестовый режим» должен отключиться.

Если же, по каким-то причинам этот способ не помог, то делаем следующее:

— Так же заходим к командную строку от имени администратора и вводит по очереди следующие команды. (после каждой строки нажимаем Enter)

bcdedit.exe -set loadoptions ENABLE_INTEGRITY_CHECKS

— Второй строкой вводим: bcdedit.exe -set TESTSIGNING OFF

Жмем Enter и перезагружаем ПК. Теперь надпись «Тестовый режим» точно должна уйти.

Включить тестовый режим:

Здесь все так же предельно просто. Открываем командную строку от имени администратора и вводим: bcdedit.exe -set TESTSIGNING ON

Перезагружаем ПК и тестовый режим будет включен.

Источник

Тестирование электронного оборудования

Благодаря тому, что в разное время преобладало то или иное мнение о том, как должно проводиться тестирование и, что будет являться успешным критерием теста – выделяется несколько подходов. С точки зрения тестирования оборудования мы предлагаем выделить внутреннее и внешнее тестирование.

Любое сложное оборудование просто обязано пройти полное тестирование на специальных нагрузочных стендах для проверки работоспособности во всех заявленных в технических характеристиках и паспортах режимах работы.

Читайте также:  Чем накачать мышцы в домашних условиях Обзор оборудования

Услуги тестирования оборудования

Тестирование различных типов информационного, сетевого и телекоммуникационного оборудования

Организация лабораторных испытаний с моделированием проблемных ситуаций в лабораторных условиях. Сравнительное тестирование оборудования разных производителей. Тестирование на соответствие заявленным производителями оборудования характеристикам. Тестирование периферийного оборудования, изучение документации. Настройка (в том числе удаленная) оборудования и запуск программного обеспечения на нем.

Тестирование электрической принципиальной схемы

Анализ схемы электрической принципиальной. Осуществление заказа печатных плат для опытного образца. Монтаж радиоэлектронных компонент на ПП для опытного образца. Демонтаж и замена указанных Вами радиоэлектронных компонентов. Осуществление заказа качественного (только проверенные партнеры) серийного монтажа. Сборка продукта.

Проверка эргономичности и тестирование конструкции

Тестирование эргономичности изделий любой сложности. Проверка конструкций на ранних этапах процесса проектирования, разработка рекомендаций по повышению удобства эксплуатации изделия. Разработка рекомендаций по упрощению конструкции, анализ изделия с точки зрения последующего технического обслуживания.

Проведение полевых испытаний

Проведение полевых испытаний оборудования на соответствие заявленным параметрам. Дистанционное диагностирование оборудования и ПО при нетиповых сбоях в работе. Выявление причин нетиповых ошибок, составление технического задания и передача разработчикам ПО и оборудования.

Нагрузочное тестирование

Проведение обследования оборудования при подготовке к нагрузочному тестированию. Разработка сценариев и скриптов для нагрузочного тестирования. Автоматизация процесса тестирования и разработка скриптов для имитации нагрузки. Формирование отчетов, выводов.

Приёмо-сдаточное тестирование (Acceptance Testing) и независимый контроль качества

Приемка оборудования с производства, приемка промышленных информационных систем. Проведение UAT, функционального, нагрузочного и интеграционного тестирования. Комплексное тестирование перед вводом в эксплуатацию. Выявление причин нетиповых ошибок, составление протокола замечаний и передача разработчикам ПО/оборудования.

Основную роль в успешном проведении таких тестов и подписании протокола без замечаний, мешающих начать поставку оборудования, служит прохождение всех тестов без выявления ошибок в функционировании оборудования.

Подход, как к самому тестированию оборудования, так и выделению персонала для этой работы, у каждого производителя разный. Однако очевидное мнение о том, что разработчики сами без посторонней помощи могут проводить проверку качества написанного программного обеспечения, уже в прошлом. Существует множество признаков, по которым принято производить классификацию видов тестирования. Мы предлагаем взглянуть на тему проверки качества с точки зрения тестирования продукта на стадии производства, когда тесты проводит производитель, тестируя на территории предполагаемого заказчика оборудования.

Внутреннее тестирование

Производитель проводит тестирование, призванное выявить ошибки, как аппаратной части оборудования, так и программного обеспечения. Стоимость исправления одной не выявленной ошибки на стадии концептуального проектирования и стоимость ошибки, которая была выявлена уже после начала эксплуатации, отличается в сотни раз. Поэтому, прежде чем пойти в серию, аппаратная платформа может быть несколько раз изменена, а модули, из которых состоит ПО, могут быть несколько раз частично или даже полностью переписаны.

С точки зрения «внутреннего тестирования»успешным является тест, который обнаруживает ранее неизвестные проблемы, а сам поиск ошибок должен носить предупреждающий характер, т. е. проведение тестов должно планироваться еще до написания программного модуля. Такое внутреннее тестирование должно включать планирование, проектирование, создание, поддержку и выполнение тестов, создание тестовых окружений. Фактически, это означает переход от тестирования к обеспечению качества, охватывающего весь цикл разработки ПО.

Внешнее тестирование

Окончательное решение о закупке телекоммуникационного оборудования принимается, как правило, только после того, как заказчик удостоверится в качестве предложенного продукта. Для этого проводится тестирование на территории заказчика или внешнее тестирование.

С точки зрения производителя, такое тестирование имеет цель показать, что весь функционал предложенного оборудования работает верно. По окончанию такого тестирования составляется протокол, где указана методика тестирования, результаты тестирования, и выводы, где указано, рекомендуется оборудование к эксплуатации или нет.

Перед началом тестирования на территории заказчика представители завода-изготовителя согласовывают методику проведения тестов. Это делается с целью подготовки файлов с настройками для каждого теста, что впоследствии ускоряет процесс проведения тестирования в целом.

Подобное тестирование может проводиться без выезда представителя производителя оборудования к заказчику или в присутствии инженера завода изготовителя.

Основную роль в успешном проведении таких тестов и подписании протокола без замечаний, мешающих начать поставку оборудования, служит прохождение всех тестов без выявления ошибок в функционировании оборудования.

На протяжении последних десяти лет серьезно менялись требования к функционалу телекоммуникационного оборудования. Это связано с применением новых технологий, увеличения требований к безопасности, и т.д. Все это заставляет производителей оборудования более серьезно подходить к процессу тестирования своих продуктов.

Применение скриптов для автоматизации тестирования

В процессе проведения тестирования бывает необходимо проверить работоспособность одного и того же компонента несколько раз и каждый раз после окончания теста написать отчет, на что иногда уходит больше времени, чем на выявление самой проблемы. Не стоит забывать про скорость выполнения теста и банальную усталость инженера, проводящего тестирование. По этим причинам выполнять однотипные операции много раз вручную не эффективно, а, значит, процесс тестирования надо автоматизировать.

Для автоматизации тестирования применяются различные скриптовые языки, такие как Perl или Python.

С помощью автоматизации тестирования можно проводить:

  • Тестирование производительности. К таким проверкам относятся нагрузочные тесты, стресс тесты, тесты на стабильность
  • Регрессионное тестирование. ПО проверяется на корректность функциональности, выпущенной и протестированной в предыдущей версии.
  • Конфигурационное тестирование. Проводится для проверки работы одного или нескольких компонентов ПО в разном окружении, например возможность консольного доступа к коммутатору с помощью разных утилит.
  • Функциональное тестирование. Непосредственно тестирование функций ПО.
  • Установочное тестирование. Выполняется для проверки условий установки (и настройки) оборудования с учётом тех или иных требований заказчика к системе.

В целом автоматизация тестирования нужна для проведения тестов и генерации отчетов без участия инженера.

Ручное тестирование и почему все нельзя протестировать скриптами

Хорошо известно, что положительные стороны автоматизированного тестирования, являются одновременно и отрицательными сторонами такого подхода.

Недостатки автоматизации тестирования заключаются в следующем:

  • Повторяемость – все написанные тесты всегда будут выполняться однообразно. Тестировщик, выполняя тест вручную, может обратить внимание на некоторые детали и, проведя несколько дополнительных операций, найти дефект. Скрипт этого сделать не может.
  • Затраты на поддержку – несмотря на то, что в случае автоматизированных тестов они меньше, чем затраты на ручное тестирование того же функционала – они все же есть. Чем чаще изменяется приложение, тем они выше.
  • Большие затраты на разработку – разработка автоматизированных тестов это сложный процесс, так как фактически идет разработка приложения, которое тестирует другое приложение. В сложных автоматизированных тестах также есть фреймворки, утилиты, библиотеки и прочее. Естественно, все это нужно тестировать и отлаживать, а это требует времени.
  • Стоимость инструмента для автоматизации – в случае, если используется лицензионное ПО, его стоимость может быть достаточно высока. Свободно распространяемые инструменты, как правило, отличаются более скромным функционалом и меньшим удобством работы.
  • Пропуск мелких ошибок – автоматический скрипт может пропускать мелкие ошибки, на проверку которых он не запрограммирован. Это могут быть неточности в позиционировании окон, ошибки в надписях, которые не проверяются, ошибки контролов и форм, с которыми не осуществляется взаимодействие во время выполнения скрипта.

Таким образом, одними только автоматическими тестами нельзя обойтись, кроме того, вручную проводятся тесты, которые нельзя автоматизировать, например, это может быть тест индикации портов коммутатора или звонок с одного телефонного аппарата на другой, если речь идет о голосовом шлюзе.

Источник