Меню

УЗИП Устройство защиты от импульсных перенапряжений

ОБОРУДОВАНИЕ ДЛЯ МОНТАЖА СИСТЕМ ОСВЕЩЕНИЯ

В этой статье мы расскажем о необходимом оборудовании и аксессуарах, позволяющих упростить монтаж систем освещения, продлить срок их эксплуатации и сделать обслуживание сети максимально технологичным. В случае возникновения нештатных ситуаций минимизировать время на их устранение.

УЗИП (Устройство защиты от импульсных перенапряжений)

Применение светодиодных светильников позволяет обеспечить необходимое освещение рабочих мест и помещений с максимальной экономией на энергозатратах и сервисном обслуживании.

Светодиодные светильники чувствительны к перенапряжениям. Для эффективной защиты от скачков напряжения немецким производителем Phoenix Contact разработаныУЗИП класса 2 BLOCKTRAB-T2, отличающиеся рядом особенностей:

  • Винтовые клеммы, с возможностью одновременного подключения двух проводов, позволяют максимально упростить монтаж сети.
  • Усиленная изоляция в соответствии со стандартом IEC 60364-4-41 (категория 2) обеспечивает долговечность и надежность работы.
  • Оптический и механический индикатор позволяет видеть состояние и работоспособность устройства на расстоянии и в условиях плохой освещенности при нештатных ситуациях.

Внутри светильника;
В столбе;
В распределительной коробке;
В шкафу управления в непосредственной близости от системы уличного или дорожного освещения.

Система быстрого монтажа кабельной разводки QPD от Phoenix Contact

Практически все работы, связанные с монтажом и обслуживанием осветительной сети являются высотными. Монтажная системаQPDпозволяет сократить количество и упроститьтехнологические операции, проводимые на высоте. В следствии этого сокращается время и повышается безопасность работ по монтажу и обслуживанию осветительной сети.

СистемаQPDстехнологией Push-in-Technology (или быстрым ножевым соединением IDC QUICKON) позволяет осуществить подключение проводов (до 5 x 6,0 мм) без снятия изоляции и применения специального инструмента.

Монтаж кабеля происходит в три этапа:

  1. Зачистка оболочки кабеля.
  2. Установка и фиксация жил в системе QPD.
  3. Подключение к светильнику.

Практика показывает, что применение этого решения позволяет значительно сэкономить время при монтаже сети и подключении светильников, сделает сеть более ремонтопригодной.

Так же, применение этой системы позволит повысить надежность всей линии освещения:
Соединители обладают высокой степенью защиты (IP68/IP69K) и ударопочностью (IK07). Способны работать в сетях с напряжением до 690 В., с номинальными токами до 40 A.

  • В отличии от осветительных шинопроводов, в установочной системе QPDотсутствуют жесткие секции, что прощает ошибки при проектировании линий и упрощает монтаж. При эксплуатации линии не возникает опасных вибраций и компенсируются ударные нагрузки.
  • Проходной разъем, установленный в светильник, позволит подключить к нему питающий провод не открывая корпус, что обеспечивает полную его герметичность и упрощает его подключение.

Источник

Системы управления освещением

Найдено в категориях:

  • Датчики системы управления освещением (185)
  • Панели управления освещением (174)
  • Шкафы управления освещением (22)
  • Диммеры (75)
  • Аксессуары Системы Управления Освещеним (адаптеры, выключатели т.д.) (420)
  • Реле системы управления освещением (32)

Датчик движения 180 градусов IS 770 (4911000140)

  • Код товара 5226081
  • Артикул 4911000140
  • Производитель Световые Технологии/LIGHTING CONTROL

Фотореле 1300w 360 гр. IP44 белый/синий (SEN25 бел/син.)

  • Код товара 442375
  • Артикул 22055
  • Производитель FERON

Датчик движения ИК настенный 1200w 180 градусов 12м IP44 белый (SEN11 бел.)

  • Код товара 2378407
  • Артикул 22021
  • Производитель FERON

Датчик движения ИК встраиваемый 1200w 360 гр. 6м IP20 белый (SEN86 бел.)

  • Код товара 7283246
  • Артикул 22061
  • Производитель FERON

Датчик ИК потолочный 1200w 360 гр. 6м IP20 белый (SEN4 бел.)

  • Код товара 7136169
  • Артикул 22017
  • Производитель FERON

Датчик движения ИК встраиваемый 500w 360 градусов 6м IP20 белый (SEN50 бел.)

  • Код товара 1558624
  • Артикул 22066
  • Производитель FERON

Датчик движения ИК настенный 1200w 120 гр. 12м IP44 белый (SEN15 бел.)

  • Код товара 9827778
  • Артикул 22003
  • Производитель FERON

Датчик движения ИК потолочный 1200w 360 гр. 6м IP20 белый (SEN5 бел.)

  • Код товара 9827781
  • Артикул 22006
  • Производитель FERON

Фотореле 5500w IP44 белый (SEN27 бел.)

  • Код товара 829433
  • Артикул 22009
  • Производитель FERON

Датчик движения ИК накладной 1200w 120 гр. (гориз.) 360 гр. (верт.) 8м IP20 поворотный белый (SEN16/ES-P27A)

  • Код товара 2941659
  • Артикул 22074
  • Производитель FERON

Аварийные светильники серии KL-A от SLT в ассортименте ЭТМ

С режимами свечения (работы): постоянный и/или непостоянный (AC/DC). Используются для помещений.

Солнечные модули DELTA

Современные технологии производства солнечных модулей позволили увеличить их КПД, при этом площадь поверхности оставить без изменений.

  • Покупателям
    • Способ оплаты
    • Доставка
    • Акции
    • Скидки и баллы
    • Адреса магазинов
    • Договор оферты
  • Компания ЭТМ
    • О компании
    • Сервис iPRO
    • Электрофорум
    • ЭТМ Вакансии
Читайте также:  Заземление электроустановок до 1000В по ПУЭ 7

Центр поддержки и продаж

  • Электрика
  • Свет
  • Крепеж
  • Безопасность

Мы в социальных сетях

  • Повышение квалификации
  • Часто задаваемые вопросы
  • Нашли ошибку?
  • Центр обращений

© 2021 Компания ЭТМ — Копирование и использование в коммерческих целях информации на сайте www.etm.ru допускается только с письменного одобрения Компании ЭТМ. Информация о товарах, их характеристиках и комплектации может содержать неточности

Ваш город: Выберите город

Я подтверждаю свое согласие на обработку персональных данных согласно Политике обработки персональных данных

Сайт использует файлы cookie с целью повышения удобства пользования сервисом. Продолжая использовать наш сайт, вы даёте согласие на обработку cookie-файлов.

Источник



Виды и системы освещения

Системы искусственного освещения обуславливаются способами размещения светильников. По способам размещения светильников в помещениях различают системы общего и комбинированного освещения.

Освещение промышленного помещения

Система общего освещения

Система общего освещения предназначена для освещения всего помещения и рабочих поверхностей. Общее освещение может быть равномерным и локализованным. Светильники общего освещения располагают в верхней зоне помещения и крепят их на строительных основаниях здания непосредственно к потолку, на фермах, на стенах, колоннах или на технологическом производственном оборудовании, на тросах и т.д.

Система общего освещения

При общем равномерном освещении создается равномерная освещенность по всей площади помещения. Освещение с равномерным размещением светильников применяется в производственных помещениях, в которых технологическое оборудование расположено равномерно по всей площади с одинаковыми условиями зрительной работы или в помещениях общественного или административного назначения.

Равномерное освещение

Общее локализованное освещение предусматривается в помещениях, в которых на разных участках производятся работы, требующие различной освещенности, или когда рабочие места в помещении сосредоточены группами и необходимо создание определенных направлений светового потока.

Локализованное освещение

Преимущества локализованного освещения перед общим равномерным заключаются в сокращении мощности осветительных установок, возможности создать требуемое направление светового потока, избежать на рабочих местах теней от производственного оборудования и самих работающих.

Наряду с системой общего освещения в помещениях может применяться местное освещение. Местное освещение предусматривается на рабочих местах (станках, верстках, столах, разметочных плитках и т.д.) и предназначено для увеличения освещенности рабочих мест.

Устройство в помещениях только местного освещения нормами запрещено. Местное ремонтное освещение выполняется переносными светильниками, которые подключаются через понижающий трансформатор на безопасном напряжении 12, 24, 42 В в зависимости от категории помещения в отношении безопасности обслуживающего персонала.

Местное и общее освещения, применяемые совместно, образуют систему комбинированного освещения. Применяется она в помещениях с точными зрительными работами, требующими высокой освещенности. При такой системе светильники местного освещения обеспечивают освещенность только рабочих мест, а светильники общего освещения – всего помещения, рабочих мест и главным образом проходы, проезды.

Комбинированное освещение

Система комбинированного освещения уменьшает установленную мощность источников света и расход электроэнергии, так как лампы местного освещения включаются только на время выполнения работ непосредственно на рабочем месте.

Выбор системы освещения

Выбор той или иной системы освещения определяется в основном размещением оборудования и соответственно расположением рабочих мест, технологией выполняемых работ, экономическими соображениями.

Одним из основных показателей, характеризующим целесообразность применения общей или комбинированной системы освещения является плотность расположения рабочих мест в помещении (м2/чел).

В табл. 1 приведены рекомендуемые системы освещения для различных разрядов зрительной работы в зависимости от плотности расположения рабочих мест и дается при этом возможная экономия электроэнергии.

Таблица 1 . Рекомендуемые области применения систем общего и комбинированного освещения

Рекомендуемые области применения систем общего и комбинированного освещения

Примечание: + — рекомендуется; – — не рекомендуется; S — средняя плотность, м2 на одного работающего.

Искусственное освещение подразделяется на рабочее, аварийное, охранное и дежурное. Аварийное освещение может быть освещением безопасности и эвакуационным.

Рабочее освещение

Рабочим называется освещение, которое обеспечивает нормируемые осветительные условия (освещенность, качество освещения) в помещениях и в местах производства работ вне зданий.

Рабочее освещение выполняется для всех помещений зданий, а также участков открытых пространств, предназначенных для работы, прохода людей и движения транспорта. Для помещений, имеющих зоны с разными условиями естественного освещения и различными режимами работы должно предусматриваться раздельное управление освещением таких зон.

Читайте также:  Оборудование для стирки ковров и паласов

Нормируемые характеристики освещения в помещениях, снаружи зданий могут обеспечиваться как светильниками рабочего освещения, так и совместным действием с ними светильников освещения безопасности и (или) эвакуационного освещения. При необходимости часть светильников рабочего или аварийного освещения может использоваться для дежурного освещения.

Рабочее освещение в цеху

Аварийное освещение безопасности

Освещением безопасности называется освещение для продолжения работы при аварийном отключении рабочего освещения. Такой вид освещения предусматривается в случаях, если отключение рабочего освещения и связанное с этим нарушение обслуживания оборудования и механизмов может вызвать:

взрыв, пожар, отравление людей;

длительное нарушение технологического процесса;

нарушение работы ответственных объектов, таких как электрические станции, узлы радио- и телевизионных передач и связи, диспетчерские пункты, насосные установки водоснабжения, канализации и теплофикации, в которых недопустимо прекращение работ и т.п.

Аварийное освещение безопасности

Освещение безопасности должно создавать на рабочих поверхностях в производственных помещениях и на территориях предприятий, требующих обслуживания при отключении рабочего освещения, наименьшую освещенность величиной 5 % освещенности, нормируемой для рабочего освещения от общего освещения, но не менее 2 лк внутри зданий и не менее 1 лк – для территорий предприятий. При этом создавать наименьшую освещенность внутри зданий более 30 лк при разрядных лампах и более 10 лк при лампах накаливания допускается только при наличии соответствующих обоснований.

Аварийное эвакуационное освещение

Эвакуационным называется освещение для эвакуации людей из помещений при аварийном отключении рабочего освещения.

Аварийное эвакуационное освещение

Эвакуационное освещение предусматривается в помещениях или в местах производства работ вне зданий в основном в следующих случаях:

в местах, опасных для прохода людей;

в проходах и на лестницах, служащих для эвакуации людей, при числе эвакуирующих более 50 чел;

по основным проходам производственных помещений, в которых работают более 50 чел;

в помещениях общественных зданий, административных и бытовых зданий промышленных предприятий, если в помещениях могут одновременно находиться более 100 чел;

в производственных помещениях без естественного света и др.

Светильник эвакуационного освещения

Эвакуационное освещение должно обеспечивать наименьшую освещенность на полу основных проходов (или на земле) в помещениях 0,5 лк, на открытых территориях 0,2 лк.

Осветительные приборы эвакуационного освещения и освещения безопасности предусматриваются горящими, включенными одновременно с осветительными приборами рабочего освещения, и не горящими, автоматически включаемыми при прекращении питания рабочего освещения.

Охранное освещение, при отсутствии специальных технических средств охраны, должно предусматриваться вдоль границ территорий, охраняемых в ночное время. И оно должно создавать освещенность не менее 0,5 лк на уровне земли.

При использовании для охраны специальных технических средств освещенность принимается по заданию на проектирование охранного освещения.

Дежурным освещением называется освещение в нерабочее время. Область применения, величины освещенности, равномерность и требования к качеству для дежурного освещения не нормируются.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Электроснабжение, электроосвещение и силовое электрооборудование

Электроснабжение, электроосвещение и силовое электрооборудование. Вот уже более двух веков человечество активно пользуется электричеством. На сегодняшний день оно стало еще более нужным, ведь практически каждый человек пользуется интернетом, поднимается в квартиру на лифте и предпочитает книге телевизор.

Надежную и бесперебойную работу электрооборудования сможет обеспечить только правильно и грамотно составленный и оформленный согласно всем нормам проект ЭОМ – электроснабжение, электроосвещение и силовое электрооборудование. В квартирах и частных домах резкое отключение электроэнергии довольно часто приводит к сгоранию приборов, которые недешево стоят: стиральных машин, микроволновых печей, холодильников, мультиварок, компьютеров и прочих.

В промышленности тем более нельзя допускать перебоев в подаче электроэнергии, ведь остановленные шахтные компрессоры или мощные агрегаты могут не только сбить плавный ход технологического процесса, но и сорвать всю работу предприятия.

Статистика говорит о том, что проектирование ЭОМ – наиболее востребованная услуга в мире, и это неудивительно.

Читайте также:  ГОСТ 31206 2012 Оборудование деревообрабатывающее Станки деревообрабатывающие малогабаритные перемещаемые тра

Электроснабжение, электроосвещение и силовое электрооборудование. Проектирование ЭОМ

Проект ЭОМ представляет собой детальное описание всех компонентов системы освещения и электроснабжения. Раздел «Внутренние системы электроснабжения и освещения» включает в себя три подраздела: силовое электрооборудование (ЭМ), электроосвещение (ЭО) и электроснабжение (ЭС).

К силовому электрооборудованию относятся:

  1. КТП (комплектная трансформаторная подстанция) 6.10/0,4.0,66 кВ.
  2. Электросети, питающие приемники с максимальным напряжением 1 кВ (в пределах проектируемого объекта).
  3. Устройства управления электроприводами до 1 кВ вентиляционных систем, а также систем водоотведения, водоснабжения, кондиционирования и др.

Проектирование силового оборудования осуществляется с учетом особенностей и будущей модернизации проектируемого объекта, охарактеризованных в других разделах проекта.

Текстовая часть проекта подраздела ЭМ содержит:

  • пояснительную записку;
  • необходимые расчеты (число и мощность электроприемников, электрические нагрузки и т. д.);
  • задание на электрощиты изготовителю.

Графическая часть ЭМ включает в себя:

  • принципиальные электрические схемы комплектных трансформаторных подстанций;
  • принципиальные схемы питающей и распределительной сетей;
  • принципиальные схемы управления электроприводами;
  • схемы подключения;
  • схему контура заземления;
  • планы размещения электрооборудования и прокладки кабеля;
  • план расположения молниезащиты;
  • кабельный журнал;
  • ведомость заполнения труб проводами и кабелями;
  • планы расположения систем уравнивания и выравнивания потенциалов, их схемы.

Проект электроосвещения – первый шаг к электроснабжению. Без света нормальная работа людей и предприятий почти невозможна. Электроосвещение делится на:

  • электросети, предназначенные питать электричеством приемники на объекте, который проектируется;
  • управляющие устройства.

Текстовая документация ЭО:

  • пояснительная записка;
  • спецификации на электрооборудование и материалы;
  • расчеты (расчет освещения горизонтальных поверхностей; электротехнический расчет – выбор места размещения щитков, управление освещением, защита сети, выбор кабелей и проводов; оценка равномерности освещения);
  • задание на производство электрощитов.

Комплект рабочих чертежей подраздела ЭО содержит:

  • общая информация по рабочим чертежам;
  • план размещения электрооборудования и прокладки кабелей;
  • принципиальные схемы питающей сети и дистанционного управления;
  • схемы подсоединения распредустройств на напряжение до 1 кВ;
  • чертежи установки электрооборудования;
  • таблица с информацией о кабелях для питающей сети или кабельный журнал.

Электроснабжение – это комплекс мероприятий по снабжению потребителей электроэнергией. Система электроснабжения представляет собой совокупность инженерных сооружений, направленных на осуществление электроснабжения.

Проект электроснабжения является одной из главных стадий при подключении любого объекта к электроснабжению. Началом разработки является сбор данных по нагрузкам от потребителей и определения категории надежности ЭС. После анализа полученных данных формируется структура систем энергообеспечения, а также схемы распределительных устройств и сетей объекта.

Исходными данными для разработки ЭС являются:

  • технические условия, полученные от энергосбытовой организации;
  • задание на электроснабжение от смежных разделов;
  • техническое задание проекта;
  • планы всех этажей объекта.

Электроснабжение проектируется на этапе разработки проектной и рабочей документации.

В текстовую часть проекта ЭС входит:

  • Данные по источникам электроснабжения для подключения объекта к сетям ЭС общего пользования. Приводятся согласно техусловиям.
  • Обоснование принятой схемы ЭС.
  • Сведения о количестве приемников электроэнергии, их мощности (расчетной и установленной).
  • Требования к надежности ЭС и качеству электроэнергии.
  • Принятые решения по обеспечению электроэнергией электроприемников согласно принятой классификации в эксплуатационном и аварийном режиме.
  • Описание проектных решений по возмещению реактивной мощности, автоматизации, управлению, релейной защите и диспетчеризации системы ЭС.
  • Список работ, направленных на экономию электроэнергии.
  • Информация, касающаяся электрической мощности сетевых и трансформаторных объектов.
  • Принятые решения по организации ремонтов (для промышленных объектов).
  • Перечень мероприятий по заземлению и молниезащите.
  • Данные о типе проводов и осветительных элементах, использующихся во время строительства объекта.
  • Характеристика системы освещения, включая постоянно рабочие источники и аварийные.
  • Характеристика других источников электроэнергии (дополнительных и резервных).
  • Принятые решения по осуществлению резервирования электроэнергии.

Графические материалы проекта ЭС – это:

  • Принципиальные электрические схемы приемников от различных источников ЭС: основного, дополнительного, резервного.
  • Принципиальная схема сети освещения для промышленных и непроизводственных объектов.
  • Принципиальная схема сети аварийного освещения.
  • План сетей ЭС.
  • Схему расположения электрооборудования.
  • Схемы заземлений и молниезащиты.

Проект электроснабжения обязательно должен содержать инструкцию, в которой подробно описаны мероприятия, способные предохранить людей от поражения электрическим током.

Проект раздела ЭОМ должен быть составлен и оформлен в соответствии с установленными требованиями и нормами.

Источник

УЗИП — устройство защиты от импульсных перенапряжений

Что такое УЗИП

В результате разрядов атмосферного электричества или включения энергопотребителей большой мощности в электрических сетях наблюдается резкое скачкообразное повышение разницы потенциалов (перенапряжение), длящееся доли секунды, но способное принести непоправимый ущерб не только самой сети, но и подключенным к ней приборам. Избежать серьезных последствий от таких скачков поможет УЗИП – устройство защиты от импульсных перенапряжений.

Принцип действия УЗИП

Основным чувствительным элементом УЗИП является особый полупроводниковый модуль (варистор), сопротивление которого резко уменьшается, если напряжение, которое протекает через него, превышает номинальные установленные значения.

Принцип работы УЗИП для частного дома можно рассмотреть на примере лампы, включенной в однофазную электрическую цепь.

Следует помнить, что один полюс УЗИП подключается к фазному проводнику после автоматического выключателя, а второй полюс к контуру заземления.

Если напряжение в сети не превышает верхнюю границу допустимых колебаний, установленных ГОСТ 29322-92, варистор защитного устройства имеет высокое сопротивление и поэтому электрический ток беспрепятственно поступает к нагрузке, минуя УЗИП.

Когда, по какой-либо причине, напряжение в сети резко возрастает, сопротивление полупроводникового элемента УЗИП мгновенно падает до минимальных значений. В результате этого ток начинает поступать через защитное устройство на контур заземления, создавая искусственное короткое замыкание, провоцирующее срабатывание автоматического выключателя и обесточивание сети. После того, как напряжение снизится до допустимых пределов, сопротивление варистора возрастет и цепь продолжит работу в обычном режиме.

УЗИП: классы

Такие устройства, в зависимости от конструкции и целевой защиты, подразделяются на три класса.

  • УЗИП I класса является действенной защитой от перенапряжений, причиной которых является разряд молнии. Устройства этого класса устанавливаются на вводах питающего напряжения в энергоемкие производственные цеха, крупные административно-бытовые здания, торговые и развлекательные комплексы и пр.
  • УЗИП II касса предохраняют бытовую технику и электрическую проводку от импульсов перенапряжения, возникающих из-за включения или отключения оборудования большой мощности. Устройство УЗИП II класса монтируются в распределительные щиты, установленные в подъездах многоквартирных домов.
  • УЗИП III класса наиболее чувствительны и реагируют на мгновенные скачки напряжения, причиной которого является короткое замыкание в сети. Такие устройства необходимы для защиты высокоточного и дорогостоящего электронного оборудования, в том числе медицинского.

На некоторых моделях УЗИП может стоять другая маркировка, например ОПС (ограничитель перенапряжений сети) или ОИН (ограничитель импульсных напряжений). Однако какое бы название не имело такое устройство, задача у него одна – защита от импульсных перенапряжений.

Базовые характеристики УЗИП

Выбор УЗИП для дома или для защиты промышленной сети должен основываться на базовых характеристиках устройства. Для удобства и облегчения подбора устройства защиты от импульсных перенапряжений они типографским способом наносятся на его корпус:

  • номинальное и предельное напряжение питающей сети – напряжение, на которое рассчитано устройство;
  • номинальный и максимальный ток разряда – импульс тока, который даже при многократном прохождении через устройство не приведет к его выходу из строя;
  • уровень напряжения защиты – предельная величина напряжения, при котором устройство не срабатывает;
  • класс испытаний;
  • индикатор состояния варистора – зеленый (рабочий), а красный (устройство вышло из строя).

Цветовая индикация состояния варистора позволяет заметить, что он находится в нерабочем состоянии, и вовремя заменить его на новый.

Источник



УЗИП — устройство защиты от импульсных перенапряжений

Назначение УЗИП

Устройство защиты от импульсных перенапряжений (УЗИП) — устройство предназначенное для защиты электрической сети и электрооборудования от перенапряжений которые могут быть вызваны прямым или косвенным грозовым воздействием, а так же переходными процессами в самой электросети.

Другими словами УЗИПы выполняют следующие функции:

Защита от удара молнии электрической сети и оборудования, т.е. защита от перенапряжений вызванных прямыми или косвенными грозовыми воздействиями

Защита от импульсных перенапряжений вызванных коммутационными переходными процессами в сети, связанных с включением или отключением электрооборудования с большой индуктивной нагрузкой, например силовых или сварочных трансформаторов, мощных электродвигателей и т.д.

Защита от удаленного короткого замыкания (т.е. от перенапряжения возникшего в результате произошедшего короткого замыкания)

УЗИПы имеют различные названия: ограничитель перенапряжений сети — ОПС (ОПН), ограничитель импульсных напряжений — ОИН, но все они имеют одинаковые функции и принцип работы.

Внешний вид УЗИП:

Внешний вид УЗИП

Принцип работы и устройство защиты УЗИП

Принцип работы УЗИПа основан на применении нелинейных элементов, в качестве которых, как правило, выступают варисторы.

Варистор — это полупроводниковый резистор сопротивление которого имеет нелинейную зависимость от приложенного напряжения.

Ниже представлен график зависимости сопротивления варистора от приложенного к нему напряжения:

Зависимость сопротивления УЗИП от напряжения сети

Из графика видно, что при повышении напряжения выше определенного значения сопротивление варистора резко снижается.

Как это работает на практике разберем на примере следующей схемы:

Схема работы узип

На схеме упрощенно представлена однофазная электрическая цепь, в которой через автоматический выключатель подключена нагрузка в виде лампочки, в цепь так же включен УЗИП, с одной стороны он подключен к фазному проводу после автоматического выключателя, с другой — к заземлению.

В нормальном режиме работы напряжение цепи составляет 220 Вольт, при таком напряжении варистор УЗИПа обладает высоким сопротивлением измеряющимся тысячами МегаОм, настолько высокое сопротивление варистора препятствует протеканию тока через УЗИП.

Что же происходит при возникновении в цепи импульса высокого напряжения, например, в результате удара молнии (грозового воздействия).

устройство защиты узип

На схеме видно что при возникновении импульса в цепи резко возрастает напряжение, что в свою очередь вызывает мгновенное, многократное уменьшение сопротивления УЗИПа (сопротивление варистора УЗИПа стремится к нулю), уменьшение сопротивление приводит к тому, что УЗИП начинает проводить электрически ток, закорачивая электрическую цепь на землю, т.е. создавая короткое замыкание которое приводит к срабатыванию автоматического выключателя и отключению цепи. Таким образом ограничитель импульсных перенапряжений защищает электрооборудование от протекания через него импульса высокого напряжения.

Классификация УЗИП

Согласно ГОСТ Р 51992-2011 разработанного на основе международного стандарта МЭК 61643-1-2005 есть следующие классы УЗИП:

УЗИП 1 класс — (так же обозначается как класс B) применяются для защиты от непосредственного грозового воздействия (удара молнии в систему), атмосферных и коммутационных перенапряжений. Устанавливаются на вводе в здание во вводно-распределительном устройстве (ВРУ) или главном распределительном щите (ГРЩ). Обязательно должен устанавливаться для отдельно стоящих зданий на открытой местности, зданий подключаемых к воздушной линии, а так же зданий имеющих молниеотвод или находящихся рядом с высокими деревьями, т.е. зданиях с высоким риском оказаться под прямым или косвенным грозовым воздействием. Нормируются импульсным с формой волны 10/350 мкс. Номинальный разрядный ток составляет 30-60 кА.

УЗИП 2 класс — (так же обозначается как класс С) применяются для защиты сети от остатков атмосферных и коммутационных перенапряжений прошедших через УЗИП 1-го класса. Устанавливаются в местных распределительных щитках, например во вводном щитке квартиры или офиса. Нормируются импульсным током с формой волны 8/20 мкс Номинальный разрядный ток составляет 20-40 кА.

УЗИП 3 класс — (так же обозначается как класс D) применяются для защиты электронной аппаратуры от остатков атмосферных и коммутационных перенапряжений, а так же высокочастотных помех прошедших через УЗИП 2-го класса. Устанавливаются в разветвительные коробки, розетки, либо встраивается непосредственно в само оборудование. Примером использования УЗИПа 3-го класса служат сетевые фильтры применяемые для подключения персональных компьютеров. Нормируются импульсным током с формой волны 8/20 мкс. Номинальный разрядный ток составляет 5-10 кА.

Маркировка УЗИП — характеристики

характеристики узип

Характеристики УЗИП:

  • Номинальное и максимальное напряжение — максимальное рабочее напряжение сети на работу под которым рассчитан УЗИП.
  • Частота тока — рабочая частота тока сети на работу при которой рассчитан УЗИП.
  • Номинальный разрядный ток (в скобках указана форма волны тока) — импульс тока с формой волны 8/20 микросекунд в килоАмперах (кА), который УЗИП способен пропустить многократно.
  • Максимальный разрядный ток (в скобках указана форма волны тока) — максимальный импульс тока с формой волны 8/20 микросекунд в килоАмперах (кА) который УЗИП способен пропустить один раз не выйдя при этом из строя.
  • Уровень напряжения защиты — максимальное значение падения напряжения в килоВольтах (кВ) на УЗИПе при протекании через него импульса тока. Данный параметр характеризует способность УЗИПа ограничивать перенапряжение.

    Схема подключения УЗИП

    Общим условием при подключении УЗИП являетя наличие со стороны питающей сети предохранителя или автоматического выключателя соответствующего нагрузке сети, поэтому все представленные ниже схемы будут включать в себя автоматические выключатели (схему подключения УЗИП в электрощитке смотрите здесь):

    Схемы подключения УЗИП (ОПС, ОИН) в однофазную сеть 220В (двухпроводную и трехпроводную):

    узип схема подключения 220в

    Схемы подключения УЗИП (ОПС, ОИН) в трехфазную сеть 3800В

    подключение узип в трехфазной сети

    Принципиальные схемы подключения УЗИП выглядят следующим образом:

    принципиальные электрические схемы подключения узип

    При устройстве многоступенчатой защиты от перенапряжения, т.е. установки УЗИПов 1-го класса в ВРУ здания совместно с УЗИПами 2-го класса в распределительных щитах здания и с УЗИПами 3-го класса, например, в розетках, необходимо соблюдать расстояние между УЗИПами по кабелю не менее 10 метров:

    Устройство многоступенчатой защиты электросети здания от перенапряжений

    Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в комментариях!

    Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

    Источник

    Статьи и обзоры систем автоматизации и безопасности

    23 октября 2012

    Защита коаксиальных линий

    Целью данной статьи не является рассмотрение вопросов топологии построения систем видеонаблюдения и выбора основного технологического оборудования. Ниже будут рассмотрены лишь вопросы, связанные с защитой от грозовых и коммутационных перенапряжений проектируемых, а так же находящихся в эксплуатации систем.

    1. Общие принципы защиты оборудования

    Основными техническими мероприятиями в области защиты от импульсных перенапряжений, возникающих между различными элементами и составными частями изделия или объекта в целом при прямом или близком ударе молнии, являются:

    • Создание системы внешней молниезащиты
    • Создание качественного заземляющего устройства для отвода на него импульсных токов молнии;
    • Экранирование оборудования и линий, входящих в него, от воздействия электромагнитных полей, возникающих при протекании токов молнии по металлическим элементам системы молниезащиты, строительным металлоконструкциям и другим проводникам при близком размещении оборудования к ним
    • Создание системы уравнивания потенциалов внутри объекта или в точке установки видеокамеры, путем соединения при помощи потенциалоуравнивающих проводников всех металлических элементов объекта или частей оборудования (за исключением токоведущих и сигнальных проводников)
    • Установка на всех линиях, входящих в объект (или отдельно размещенное оборудование), устройств защиты от импульсных перенапряжений (УЗИП), с целью уравнивания потенциалов токоведущих или сигнальных проводников относительно заземленных элементов и конструкций объекта. Иногда может понадобиться защита и внутренних линий, соединяющих различное оборудование, например, шины постоянного тока на выходе выпрямителя и т.д.

    Из вышесказанного следует, что проблема защиты от импульсных грозовых перенапряжений может быть решена только комплексным путем, при условии выполнения всех перечисленных мероприятий. Рассмотрим более подробно соответствующие им системы, устройства и технические решения.

    1) Система внешней молниезащиты.

    Система внешней молниезащиты важна с точки зрения защиты объекта от прямого попадания молнии, уменьшения амплитудного значения токов растекания по его металлическим конструкциям, корпусам установленного внутри объекта оборудования и кабельным линиям, подключенным к нему, а так же для предотвращения искрения и возможности возникновения пожара. Достигается это за счет создания путей отвода токов молнии к заземляющему устройству по специально проложенным токоотводам. Система внешней молниезащиты может быть выполнена в соответствии с рекомендациями «Инструкции по устройству молниезащиты зданий и сооружений», РД 34.21.122-87 или «Инструкции по устройству молниезащиты зданий, сооружений и промышленных коммуникаций», СО–153-34.21.122-2003. Обе инструкции носят рекомендательный характер и до выхода соответствующего технического регламента могут быть использованы при решении задач проектирования и строительства объектов самого разного назначения.

    Система внешней молниезащиты обязательно должна быть установлена на здании, в котором находится приемное оборудование системы видеонаблюдения. Это так же может быть дополнительно мотивировано наличием в сооружении других чувствительных к перенапряжениям и помехам электронных систем, таких как: интеллектуальный дом, компьютерные сети, сети связи, передачи данных и т.п. Так же необходимо учитывать зоны защиты, образованные зданиями, отдельно стоящими молниеприемниками, осветительными мачтами и другими строительными конструкциями при размещении наружных камер видеонаблюдения.

    Сразу стоит обратить особое внимание на то, что камеры, установленные на отдельно стоящих молниеприемниках, порталах или прожекторных мачтах не будут защищены от прямого удара молнии. Ток молнии, стекающий по телу молниеприемника, будет протекать и по корпусам видеокамер, а так же создаст электромагнитное поле такой большой напряженности, которое вызовет индуцированные токи и перенапряжения внутри гермобокса камеры и ее электронной схемы. Это приведет к практически гарантированному выходу видеокамеры из строя. С целью исключения описанной выше ситуации необходимо размещать видеокамеры на отдельной стойке, отстоящей от молниеприемника на расстоянии 5-10 м, но при этом в зоне его защиты.

    Проблемы с вопросами ЭМС могут возникнуть так же при размещении видео камер на стенах здания непосредственно вблизи от токоотводов системы молниезащиты. В этом случае необходимо устанавливать их не ближе 5 м от токоотводов. Однако в реальности это расстояние может оказаться меньшим, что будет определяться расстоянием между токоотводами в случае частого шага их следования. При размещении камер на здании так же необходимо учитывать зоны защиты, создаваемые его строительными конструкциями и имеющимися элементами внешней системы молниезащиты. В некоторых случаях (установка камеры на козырьке крыши или на пристройке к зданию и т.п.) может появиться необходимость в доработке системы молниезащиты с целью создания дополнительной зоны защиты видеокамеры (см. рис. 1). Необходимо отметить, что при отсутствии определенного опыта в проектировании систем молниезащиты, подобных вариантов размещения стоит избегать или обращаться за помощью в специализированные организации.

    Рис.1 α- защитный угол

    2) Заземляющее устройство системы молниезащиты

    Заземляющее устройство системы молниезащиты предназначено для отвода токов молнии в землю и должно иметь непосредственную электрическую связь с защитным заземляющим устройством электроустановки (с целью уравнивания потенциалов при ударе молнии). При этом, чем более низкое сопротивление будет имеет заземляющее устройство системы молниезащиты, тем ниже будет значение потенциала на главной заземляющей шине (ГЗШ) объекта при ударе молнии, что, соответственно, уменьшит амплитудные значения перенапряжений в силовых и сигнальных цепях и на входах оборудования.

    3) Экранирование оборудования и линий

    Экранирование оборудования, электропитающих и сигнальных кабелей позволяет минимизировать значения токов и напряжений, которые могут быть индуцированы в них при воздействии сильных электромагнитных полей. Например, кабели периметральной системы видеонаблюдения целесообразно разместить в металлическом коробе, разделенном на отдельные секции для питающих и сигнальных (слаботочных) кабелей (см. рис. 2). Когда масштабы объекта и его значимость велики, и к тому же помимо системы видеонаблюдения по периметру установлены и другие охранные или вспомогательные системы контроля, то такой способ прокладки кабелей вполне экономически обоснован, другие системы тоже выиграют в защищенности. Единственное, необходимо обеспечить электрическую целостность этого, как правило, сборного короба путем соединения его отдельных частей между собой. Соединения могут осуществляться при помощи сварки сплошным швом, болтовыми, винтовыми, клепанными соединениями, а так же гибкими металлическими перемычками. При этом особое внимание необходимо уделять качеству зачистки соединяемых поверхностей и вопросам их коррозионной устойчивости. Крышки металлических коробов должны отвечать тем же требованиям, что и сами короба.

    И присоединяться к ним как минимум на обоих концах. Подробно пути решения этих вопросов рассматриваются в [2, 3]. Другие дополнительные требования по экранированию оборудования и кабелей могут быть указаны в различных ведомственных нормативных документах, с учетом специфики конкретных объектов.

    Часто случается, что необходимость экранировки возникает и внутри объекта, при плохих экранирующих свойствах строительных конструкций (дерево, кирпич), при сложной электромагнитной обстановке внутри объекта (наличие источников сильных электромагнитных полей), при близкой прокладке с посторонними кабелями и коммуникациями, имеющими выход за пределы здания в зоны молниезащиты 0А или 0В [1, 3] и т.п.

    4) Создание системы уравнивания потенциалов

    Система уравнивания потенциалов на любом объекте важна, прежде всего, с точки зрения обеспечения электробезопасности персонала при коротких замыканиях в оборудовании на корпус, а так же при растекании токов молнии при прямом ударе в объект или в случае заноса опасных токов и напряжений через входящие линии и коммуникации. Основные требования к этой системе определены ПУЭ главой 1.7 и ГОСТ Р 50571. Так же очень важное значение имеет система уравнивания потенциалов с точки зрения защиты от перенапряжений самого оборудования. Хорошо известно, что если в некоторой системе удается достигнуть равенства потенциалов между ее различными элементами (корпусами оборудования, электропитающими и сигнальными проводниками), то перенапряжений, способных вызвать пробой изолирующих материалов в такой системе не будет.

    Система уравнивания потенциалов должна создаваться и для каждой видеокамеры в месте ее установки (см. рис. 3). Она подразумевает под собой создание некой физической точки (шины, клеммы), размещенной в непосредственной близости от видеокамеры, ее блока питания и другого вспомогательного оборудования. С этой точкой медными проводниками по максимально возможному кратчайшему пути необходимо соединить заземляющие клеммы камеры (гермокожуха), блока питания и устройств защиты от импульсных перенапряжений (УЗИП) цепей питания и видеосигнала. К этой точке (шине необходимо так же подключить РЕ проводник питающей линии и проводник от заземляющего устройства. Вопрос о том заземлять или не заземлять экран коаксиального кабеля с точки зрения защиты от помех останется за рамками данной статьи, так как публикаций на эту тему написано уже достаточно много. В любом случае при использовании УЗИП для коаксиальной линии, экран кабеля и центральная жила через разрядник и супрессорные диоды будут связаны с заземляющим устройством и потенциалы между ними будут уравниваться при возникновении импульсных перенапряжений (см. схему на рис. 4).


    Рис. 3

    5) Применение устройств защиты от импульсных перенапряжений

    Как уже говорилось, элементы системы видеонаблюдения в зависимости от места их размещения на объекте могут иметь различную степень защищенности при ударе молнии.

    Для защиты входов электропитания и сигнальных цепей применяются устройства защиты от импульсных перенапряжений разных типов и конструкций. При этом четко должно выполняться следующее правило: все линии приходящие со стороны Зоны 0 должны иметь надежно заземленные на ГЗШ экранные оболочки. Кроме того, рабочие проводники этих кабелей должны быть так же подключены к общей системе уравнивания потенциалов через УЗИП.

    2. Примеры выбора и установки устройств защиты от импульсных перенапряжений

    1) Краткий анализ путей решения проблемы защиты от перенапряжений оборудования системы видеонаблюдения ПС 750 кВ

    Рассмотрим возможные пути решения защиты оборудования видеонаблюдения на примере реального объекта — подстанции ПС 750 кВ.

    Для передачи видеосигнала на большие расстояния, конечно же, лучше использовать оптоволоконные кабели. В первую очередь, это скажется в лучшую сторону на качестве видеосигнала, во вторую очередь, позволит значительно снизить вероятность повреждения оборудования на приемной стороне (на посту видеонаблюдения). Возможно, конечно, применение симметричной пары, но это усложнит решение проблемы электромагнитной совместимости и защиты приемного оборудования от занесенных токов и перенапряжений. Коаксиальные кабели по известным всем причинам на больших расстояниях не используются.

    Видеокамеры не рекомендуется устанавливать на порталах и осветительных мачтах, об этом говорилось в начале статьи. Но если заказчик настаивает на этом с точки зрения возможности лучшего обзора и качества картинки, то он должен готов при этом держать в ЗИПе достаточное количество камер и менять их при выходе из строя после прямого удара молнии в перечисленные выше элементы объекта. Следующим вопросом становится необходимость защиты связанного с такими камерами оборудования преобразования сигналов и исключения распространения волны перенапряжения по коммуникационным связям к удаленному оборудованию и другим камерам. Для защиты оборудования системы видео наблюдения ПС 750 кВ от воздействия импульсных перенапряжений и токов, возникающих при прямом или близком ударе молнии в элементах металлоконструкций и кабельных линиях, предлагаются следующие решения:

    1. Шкафы с оборудованием преобразования видеосигнала и другим вспомогательным оборудованием рекомендуется размещать на расстоянии не менее 5 м от молниеприемников (порталов) в случае стесненных условий, или на расстоянии не менее 10 м в обычных условиях. Кабельные линии к установленным на порталах видеокамерам рекомендуется прокладывать в заземленных металлических трубах, коробах или металлорукавах.

    Выполнение данного пункта позволит уменьшить (за счет удаления от места протекания тока молнии и точки его входа в заземляющее устройство):
    влияние электромагнитного поля на оборудование шкафа и подводимые к нему линии;
    величину броска потенциала на заземленных элементах оборудования, размещенного в шкафу, который может возникнуть в случае прямого удара молнии в металлические конструкции портала. Это, в свою очередь, уменьшит значение перенапряжения между заземленными и не заземленными элементами оборудования и, соответственно, вероятность его выхода из строя.

    Примечание: данный пункт рекомендован специалистами ООО «ЭЗОП» г. Москва на основании требований РД 34.20.116-93 «Методические указания по защите вторичных цепей электрических станций и подстанций от импульсных помех»

    2. Для защиты оборудования в шкафах, установленных вблизи порталов или других молниеприемников, от перенапряжений значительных величин, возникающих при прямом ударе молнии в портал, необходимо установить на входящих и выходящих из каждого типа оборудования питающих и сигнальных линиях устройства защиты от импульсных перенапряжений. Параметры этих УЗИП выбираются с учетом значений рабочих сигналов и напряжений и ожидаемых импульсных токов и напряжений. Практическое определение величин импульсных токов и перенапряжений возможно только путем выполнения обследования электромагнитной обстановки. Предлагаемый ниже метод является оценочным и поэтому имеет большую погрешность, т.к. не может учесть все влияющие факторы, но тем не менее поясняет суть принятого технического решения.

    Считаем, что размещение шкафов выполнено с учетом пункта 1. Стандарты МЭК предполагают, что амплитудное значение импульса тока молнии может достигать значения Iimp = 200 кА (формы 10/350 мкc). Смотри таблицу 2.4 [1]. При ударе молнии в портал или мачту освещения (связи) ток молнии будет стекать на заземленный фундамент такого молниеприемника и его молниезащитное заземление. Считаем, что у мачты это одна точка, а у портала две. Т.е. для портала в идеальном случае ток разделится пополам. Для мачты такого деления не произойдет (см. рис. 5 а, б).

    При стекании тока с токоотвода молниеприемника на заземляющее устройство часть тока (по МЭК – 50%) будет рассеяна на заземляющем устройстве, оставшаяся часть (50%) будет растекаться через имеющиеся металлические связи и коммуникации приблизительно в равных пропорциях. Так как заземляющее устройство электрической подстанции, как правило, имеет очень низкое сопротивление токам растекания, данное соотношение может реально оказаться с некоторым превышением в сторону растекания на заземляющем устройстве, например 60 % на заземление, 40 % на линии коммуникаций. Таким образом, для одиночной мачты при самых худших ожиданиях через камеру и подключенные от нее к шкафу линии может стекать до 40% тока молнии. Этот ток будет делиться приблизительно поровну между проводниками данных линий. Их количество может составить например: в случае когда к камере подключена питающая линия 220 В (3 проводника — L, N и PE) и коаксиальный кабель (2 проводника — экран и центральная жила), итого – 5 проводников. При этом в каждом из 5 проводников этих линий могут протекать до 40 %: 5 = 8 % от общего тока молнии 200 кА, т.е. приблизительно 16 кА (формы 10/350 мкc).

    Для портала ток молнии поделится по 50 % на каждую опору. С учетом рекомендаций МЭК, приведенных выше, через камеру и подключенные к ней линии в худшем случае будет протекать до 20 % общего тока молнии. Таким образом, в каждом из 5 проводников будет протекать 20 % : 5 = 4 % от общего импульсного тока молнии 200 кА, т.е. приблизительно 8 кА (формы 10/350 мкc).


    Рис.5 а) Удар молнии в мачту освещения (связи). б) Удар молнии в портал.

    Исходя из этих, конечно же приблизительных, расчетов можно подобрать УЗИП для каждого типа технологического оборудования (основные параметры УЗИП приведены в Таблице 1)

    Источник

    Грозозащита Ethernet для IP-видеонаблюдения

    Система IP-видеонаблюдения — это совокупность сложных высокотехнологичных устройств с чувствительной электроникой. Эти устройства подвержены влиянию перенапряжений, бросков тока, статического электричества и т.п. А если мы говорим об уличном видеонаблюдении и, тем более, системах наблюдения на периметре, то дополнительную угрозу несут в себе наведенные напряжения вследствие удара молнии во время грозы. О том, как обеспечить грозозащиту и непрерывную работу системы видеонаблюдения, мы и поговорим в статье.

    Ууууу. грозы для системы IP-видеонаблюдения

    Для начала разберемся в терминологии. «Грозозащита» — устаревший и не подкрепленный нормативной документацией термин. В литературе встречается термин «молниезащита» и именно его корректно использовать для устройств, сооружений и комплекса мероприятий для защиты от прямого или непрямого попадания молнии. Однако, мы себе позволим в этой статье и далее использовать термин «грозозащита» для комфортного восприятия информации читателями. Да уж простят нас профессионалы в сфере молниезащиты.

    Когда говорят о грозозащите, предполагают защиту от разрядов молнии при грозах. Удар молнии даже в нескольких километрах от объекта вызывает короткие импульсы в слаботочных сетях в несколько сотен вольт. Возможно ли защититься от удара молнии?

    Удельная плотность грозовых разрядов в России достаточно мала и составляет около 3-х ударов в год на квадратный километр. Но если молния попадает в объект, то разрушения могут быть достаточно серьезные. Для защиты от прямого попадания молнии служат специальные сооружения, призванные перехватить удар молнии и отвести ее ток в сторону от объекта защиты. Это всем известные громоотводы. Термин «громоотвод» некорректный, но распространенный. Правильное название «молниеотвод», которого мы и будем придерживаться в дальнейшем. Никаких устройств локальной защиты от прямого попадания молнии, которые можно было бы подключить к IP-камере, не существует. При прямом попадании молнии камера просто оплавится. Для молнии характерны значения напряжений в десятки миллионов вольт, а тока — сотни килоампер в импульсе до 100 мкс. Комплекс мероприятий по устройству навесов и молниеотводов мы не рассматриваем в рамках данной статьи и предполагаем, что такая защита на объекте имеется априори.

    Наиболее вероятная угроза для системы видеонаблюдения — это короткие импульсы перенапряжений. Причины возникновения таких импульсов:

    • удар молнии поблизости от объекта, в т.ч. в молниеотвод
      Мощный электрический импульс и электромагнитное возмущение вызывает наведенную ЭДС в токопроводящих жилах цепей передачи информации и питания. В этой ситуации не помогает даже заглубление кабеля в толщу земли.
    • статическое электричество
      Перемещения кабеля, ионизированный воздух, погодные явления. Все это может вызвать появление импульсов статического напряжения, способных вывести из строя оконечное оборудование — коммутатор или видеокамеру. Наверняка все испытывали на себе действие статического электричества, когда зимой снимали свитер из синтетических тканей. Неприятно, правда? Даже такого рода разряды опасны для микроэлектроники.
    • перенапряжения вследствие коммутаций и переключений
      Подключение удаленной камеры, коммутация патчкордов в кроссовой, включение питания коммутатора на периметре, включение и отключение мощной нагрузки — это примеры переходных процессов в электрических цепях, сопровождающихся резкими скачками напряжения импульсного характера, что может вызвать сбои в работе и поломки.

    Последствия удара молнии в систему видеонаблюдения.

    Вне зависимости от способа возникновения импульсов перенапряжения, все они характеризуются значениями напряжения в несколько киловольт и временем воздействия в десятки мкс. И даже такого времени вполне достаточно, чтобы причинить непоправимый ущерб дорогостоящему оборудованию. Защитить от импульсных перенапряжений в информационных линиях и цепях питания призваны УЗИП (устройства защиты от импульсных перенапряжений). Специалисты старой школы могут вспомнить термин ОПН (ограничитель перенапряжений), что, по сути, означает то же самое.

    Конструкция и классификация устройств защиты от импульсных перенапряжений (УЗИП)

    Задача УЗИП — создать короткозамкнутую цепь на клемму заземления в момент воздействия импульса перенапряжения и тем самым предотвратить протекание тока через защищаемое оборудование. В то же время при отсутствии перенапряжений в цепи УЗИП не должно оказывать сколько-нибудь заметного влияния на режим работы оборудования.

    Компоненты для изготовления устройств грозозащиты систем видеонаблюдения.

    Для УЗИП широко используются искровые и газовые разрядники, варисторы, диоды-супрессоры.

    В зависимости от типа (класса испытаний) устройств защиты и их предназначения (защита силовых цепей, низковольтных устройств, информационных линий) используют различные схемы и комбинации вышеприведенных компонентов.

    УЗИП различаются по классам от I до III. Классы УЗИП соответствуют классам испытаний:

    • УЗИП первого класса испытаний
      Испытания по первому классу имитируют частично направленные молниевые импульсы с формой 10/350 мкс. Как правило, УЗИП класса I — это устройства для защиты общей электросети здания, которые устанавливаются на вводе.
    • УЗИП второго класса испытаний
      Испытания имитируют уже наведенные молниевые импульсы с формой 8/20 мкс. Предназначены для защиты электроаппаратуры, вторичных цепей питания, линий связи. Устанавливаются уже после УЗИП первого класса.
    • УЗИП третьего класса испытаний
      Испытания аналогичные второму классу, но расширены комбинированной волной из импульсов 1,5/50 и 8/20 мкс. Предназначены для защиты особо чувствительной аппаратуры и приборов, для которых не предусмотрено прохождение испытаний на устойчивость к импульсным перенапряжениям. Производители рекомендуют такие устройства для медицинской аппаратуры, серверов баз данных, устройств промышленной автоматики и телемеханики, дорогостоящих измерительных устройств.

    Существуют УЗИП классов I+II и I+II+III. Это не значит, что они комбинируют в себе несколько устройств. Просто такие устройства соответствуют сразу нескольким видам испытаний.

    В каталогах зарубежной продукции можно встретить разделение УЗИП по типам. Разделение устройств по классам принято в российских ГОСТ, а за рубежом принято использовать классификацию по типам. Тип и класс для УЗИП — это одно и то же.

    Какой же тактики применения УЗИП следовать для системы видеонаблюдения?

    Начнем с электропитания и общего ввода в здание. На нем обязательно применение УЗИП класса I. Но это, скорее всего, уже предусмотрено проектом электроснабжения. Устанавливать дополнительное УЗИП класса I на щитке питания системы видеонаблюдения внутри здания нецелесообразно. Но если щит электропитания вынесен из здания, то для обеспечения грозозащиты необходимы применение УЗИП класса I и организация локального заземления.

    Далее необходимо защитить информационные линии и линии электропитания камер. Об этом стоит поговорить подробнее.

    Защита со всех сторон

    Как мы определили, ЭДС может быть наведена на любой токопроводящий объект и в первую очередь на кабели (электропитания и информационный). Причем, если установить УЗИП возле одного конца, например, информационной линии Ethernet, будет осуществляться защита только того устройства, возле которого находится УЗИП. Аналогично и для цепей питания слаботочных устройств. Почему же нельзя поставить одно УЗИП на линию? Здесь все очень просто. Сопротивление кабеля слишком велико для того, чтобы импульсное перенапряжение, возникшее на незащищенном конце кабеля, могло быть эффективно нейтрализовано УЗИП, установленным на другом конце.

    Еще одним отличным решением для защиты центрального коммутационного и станционного оборудования будет применение оптоволоконных линий. Стекло не является проводником электричества и обеспечивает полную гальваническую изоляцию и защиту.

    Типовые схемы создания защищенной системы уличного и периметрального видеонаблюдения:

    Типовая схема грозозащиты уличного IP-видеонаблюдения для здания.

    Типовая схема грозозащиты оборудования IP-видеонаблюдения на периметре.

    В схемах показан вариант для камер с питанием по PoE. Если IP-камера питается отдельным напряжением, то для питающего кабеля также необходимо предусматривать защиту как на выходе из БП, так и при подключении к камере.

    УЗИП для защиты сетей Ethernet в большинстве своем имеют класс II.

    Внимание

    Без подключения к заземлению УЗИП не обеспечивают защиту. При этом заземление должно быть организовано в строгом соответствии с требованиями ПУЭ. При проектировании видеонаблюдения необходимо выделить соответствующие требования к организации заземления в точках установки УЗИП в отдельный документ в составе проекта. Документ станет частью ТЗ для проекта электроснабжения и молниезащиты. Не стоит надеяться, что монтажник по месту прикрутит клемму заземления к любой ближайшей железке, и защита будет обеспечена.

    Какое оборудование выбрать?

    Стоимость устройств защиты на один порт Ethernet составляет от 300 до 6000 р. и более. Почему такой большой разброс? Мы умышленно сказали «устройства защиты», а не УЗИП. Существует великое множество недорогих устройств, заявленных как грозозащита линии Ethernet. Выяснить, что за схемотехника и какие способы обеспечения защиты используются в таких устройствах проблематично, в документации редко указываются необходимые данные для идентификации класса защиты, тем более информация о типе УЗИП и классе защиты. Причем узнать, работает это устройство или нет, спасет ли оно в тот самый момент, который и наступит то может быть один раз в жизни, без специального тестера невозможно. Можно, конечно, понадеяться на авось и установить что подешевле — заказчик все равно не проверит работу УЗИП, но выход из строя дорогого оборудования будет на вашей совести и серьезно скажется на репутации, подорвав доверие заказчика.

    Мы рекомендуем обратить внимание на продукцию известных марок, таких как DEHN + SOHNE, PHOENIX CONTACT, HAKEL. Даже если вы выбрали качественное УЗИП, рекомендуется проверить его параметры специальным тестером. Стоимость такого тестера высока, и покупать его не имеет смысла, лучше взять в аренду либо договориться о проверке со специализированной организацией или представительством производителя. Только в таком случае вы можете быть уверены в высоком уровне защиты.

    Различные варианты УЗИП для систем видеонаблюдения.

    Будет ли выбор дорогих УЗИП стопроцентной гарантией от воздействия грозовых разрядов? Нет! Степень защиты УЗИП определяется параметрами напряжения и временем импульса. Если они будут превышены, защита может не сработать. Да и доказать, что устройство не сработало когда это нужно было, невозможно. В любом случае, если в ТЗ прописано требование обеспечить грозозащиту, установка качественных устройств защиты — это лучшее и единственное, что вы можете сделать.

    Тактика использования УЗИП для внешних систем видеонаблюдения рассмотрена в нашем вебинаре «Технологии защиты систем видеонаблюдения» от 14.10.2016. Фрагмент вебинара о грозозащите для видеонаблюдения:

    Типовые заблуждения

    Встроенная защита в устройствах

    Некоторые производители заявляют о грозозащите своего оборудования. С технической точки зрения это возможно. Почему бы не встроить схему УЗИП внутрь устройства? Однако, нередко у таких устройств отсутствует клемма заземления, нет описания класса испытаний или хотя бы параметров, которые можно было бы соотнести с нужным нам типом защиты. Какая защита установлена в таких устройствах и от чего защищает, можно только догадываться. Проверяйте информацию из рекламы в документации на продукцию.

    Для защиты достаточно молниеотвода

    Молниеотвод или в просторечии громоотвод — это комплекс мероприятий, направленный на перехват, распределение и растекание тока, возникающего вследствие прямого попадания молнии в объект защиты. Его задача — защитить здания и сооружения, взрывоопасные объекты, объекты энергетики и жизнеобеспечения от прямого попадания молнии и рисков, связанных с этим (разрушения конструкций, пожаров, взрывов, отключения электрогенерирующих мощностей и т.п.).

    Установка молниеотвода ни в коей мере не может изменить величину наведенных перенапряжений в электрических цепях объекта. Задача ограничения перенапряжений ложится полностью на УЗИП в электрических коммуникациях объекта.

    Грозозащиту можно проверить электрошокером

    Для начала, электрический импульс электрошокера не похож на измерительный импульс для проверки УЗИП. Это серия импульсов с определенной частотой в десятки герц. Данные испытания никак не соответствуют характеру воздействий в виде одиночных грозовых перенапряжений. К тому же, контур замыкания дуговых разрядов электрошокера ограничивается металлом корпуса оборудования, проводником линии питания или информационного кабеля и не распространяется на цепь. Поэтому судить о работе или не работе УЗИП при таких испытаниях некорректно.

    Для защиты достаточно заземлить камеру и экран кабеля

    Если видеокамера имеет металлический корпус, а кабель используется экранированный, то заземление корпуса камеры и экрана кабеля обязательно. Сможет ли это защитить от возникновения импульсных перенапряжений? Частично. Экран кабеля имеет достаточно высокое сопротивление, чтобы обеспечить быстрое стекание тока, возникающего в его толще вследствие воздействия электромагнитного возмущения от удара молнии.

    И ни в коем случае не заземляйте экран кабеля с двух сторон, если не уверены в равном потенциале земли. Иначе по экрану потечет постоянный ток уравнивания потенциалов, который будет уже действовать не кратковременного, а постоянно, и может нарушить работу системы.

    Устройства грозозащиты — одноразовые

    Существует мнение, что грозозащита подобна плавкому предохранителю и выгорает после воздействия разряда, вызванного молнией. Имея в голове такое убеждение, не захочется покупать устройство стоимостью несколько тысяч рублей. Так вот, это ошибочное мнение! Если в линии возникло импульсное перенапряжение в рамках класса УЗИП, то УЗИП выполняет свою функцию и не выходит из строя. Более того, при проведении испытаний УЗИП, его подвергают воздействию импульса перенапряжения не менее 15 раз. Если же УЗИП вышло из строя, то это означает, что импульс превышал расчетные значения, и тогда можно только порадоваться, что сгорело УЗИП, а не дорогостоящая IP-камера, коммутатор или сервер видеонаблюдения.

    Подробно о правильном обеспечении молниезащиты систем видеонаблюдения в своем докладе на конференции для проектировщиков PROIPvideo2018 рассказывал представитель компании Ден рус Алексей Федоров:

    Нормативная документация

    При проектировании системы видеонаблюдения с грозозащитой полезно изучить следующие нормативные документы в этой области:

    • ГОСТ Р 51992-2011 «Устройства для защиты от импульсных перенапряжений в низковольтных силовых распределительных системах». Аналог международного стандарта МЭК 61643-1:2005
    • ГОСТ Р 50571.26-2002 «Электроустановки зданий. Часть 5. Выбор и монтаж электрооборудования. Раздел 534. Устройства для защиты от импульсных перенапряжений»
    • СО 153-34.21.122-2003 «Инструкция по устройству молниезащиты зданий, сооружений и промышленных коммуникаций»
    • ПУЭ «Правила устройства электроустановок» издание 7

    Заключение

    Никакие нормативные документы не обязывают обеспечивать грозозащиту оборудования системы видеонаблюдения. Возможно, отдельными ведомственными нормативными документами и внутренними предписаниями заказчика установка УЗИП предусмотрена. Специалистам Видеомакс такие документы не встречались. В то же время установка УЗИП для ключевых камер и сетевых узлов коммутации позволит надежно защитить систему видеонаблюдения от воздействия импульсных перенапряжений, которые могут быть вызваны не только ударами молнии, но и статическим электричеством, коммутациями, включением и отключением мощных нагрузок.

    Если в ТЗ заказчик прописал требование по обеспечению защиты от импульсов перенапряжений и грозозащите, вы теперь знаете что делать. Выбирайте соответствующей задаче УЗИП и выдавайте электрикам техтребования по организации заземления в точках установки УЗИП. Если же в ТЗ прописана организация молниезащиты, то настоятельно рекомендуем передать эту работу профессионалам, т.к. расчеты устройств молниезащиты довольно сложны и должны учитывать специфику объекта защиты.

    Источник

Читайте также:  Что такое оффшоры простыми словами Виды оффшоров ТОП 5 схем использования оффшоров