Меню

Задача о замене и ремонте оборудования

Оптимальная политика замены оборудования

date image2014-02-24
views image6476

facebook icon vkontakte icon twitter icon odnoklasniki icon

Известно, что оборудова­ние со временем изнашивается, стареет физически и морально. В процес­се эксплуатации, как правило, падает его производительность и растут эксплуатационные расходы на текущий ремонт. Со временем возникает необходимость замены оборудования, так как его дальнейшая эксплуата­ция обходится дороже, чем ремонт. Отсюда задача о замене может быть сформулирована так. В процессе работы оборудование дает ежегодно прибыль, требует эксплуатационных затрат и имеет остаточную стои­мость. Эти характеристики зависят от возраста оборудования. В любом году оборудование можно сохранить, продать по остаточной цене и при­обрести новое. В случае сохранения оборудования возрастают эксплуата­ционные расходы и снижается производительность. При замене нужны значительные дополнительные капитальные вложения. Задача состоит в определении оптимальной стратегии замен в плановом периоде, с тем чтобы суммарная прибыль за этот период была максимальной.

Для количественной формулировки задачи введем следующие обо­значения: r(t) — стоимость продукции, производимой за год на единице оборудования возраста t лет; u(t) — расходы, связанные с эксплуатацией этого оборудования; s(t) — остаточная стоимость оборудования возраста t лет; р — покупная цена оборудования; Т — продолжительность плано­вого периода; t = 0,1, 2. , Т — номер текущего года.

Решение. Чтобы решить задачу, применим принцип оптимально­сти Р. Беллмана. Рассмотрим интервалы (годы) планового периода в по­следовательности от конца к началу. Введем функцию условно-опти­мальных значений функции цели Fk(t). Эта функция показывает мак­симальную прибыль, получаемую от оборудования возраста t лет за по­следние к лет планового периода. Здесь возраст оборудования рассмат­ривается в направлении естественного хода времени. Например, t = 0 соответствует использованию совершенно нового оборудования. Временные же шаги процесса нумеруются в обратном порядке. Напри­мер, при к = 1 рассматривается последний год планового периода, при к = 2 — последние два года и т. д., при к = Т — последние Т лет, т. е. весь плановый период. Направления изменения t и к показаны на рисунке.

В этой задаче систему составляет оборудование. Ее состояние ха­рактеризуется возрастом. Вектор управления — это решение в момент t = = 0,1, 2. , Т о сохранении или замене оборудования. Для нахождения оптимальной политики замен следует проанализировать, согласно прин­ципу оптимальности, процесс от конца к началу. Для этого сделаем пред­положение о состоянии оборудования на начало последнего года (k = 1). Пусть оборудование имеет возраст t лет. В начале Т-го года имеются две возможности: 1) сохранить оборудование на Т-й год, тогда прибыль за последний год составит r(t) — u(t); 2) продать оборудование по остаточ­ной стоимости и купить новое, тогда прибыль за последний год будет равна s(t) — р + г(0) — u(0), где г(0) — стоимость продукции, выпущенной на новом оборудовании за первый год его ввода; u(0) — эксплуатацион­ные расходы в этом году. Здесь целесообразно разворачивать процесс от конца к началу. Для последнего года (к = 1) оптималь­ной политикой с точки зрения всего процесса будет политика, обеспе­чивающая максимальную прибыль только за последний год. Учитывая значение прибыли при различном образе действия (замена — сохране­ние), приходим к выводу, что решение о замене оборудования возраста t лет следует принять в случае, когда прибыль от нового оборудования на последнем периоде больше, чем от старого, т.е. при условии

то старое оборудование целесообразно сохранить.

Итак, для последнего, года оптимальная политика и максимальная прибыль F1

Пусть к = 2, т. е. рассмотрим прибыль за два последних года. Де­лаем предположение о возможном состоянии t оборудования на начало предпоследнего года. Если в начале этого года принять решение о сохранении оборудования, то к концу года будет получена прибыль r(t) — u(t). На начало последнего года оборудование перейдет в состояние t + 1, и при оптимальной политике в последнем году оно принесет прибыль, равную F1(t + 1). Таким образом, общая прибыль за два года составит r(t) — u(t) + F1(t + 1). Если же в начале предпоследнего года будет при­нято решение о замене оборудования, то прибыль за предпоследний год составит s(t)-p+r(0)-u(0). Поскольку приобретено новое оборудование, на начало последнего года оно будет в состоянии t = 1. Следовательно, общая прибыль за последние два года при оптимальной политике в по­следнем году составит

Условно-оптимальной в последние два года будет политика, достав­ляющая максимальную прибыль:

Аналогично находим выражения для условно-оптимальной прибыли за три последних года, четыре и т. д. Общее функциональное уравнение примет вид

Таким образом, разворачивая весь процесс от конца к началу, получаем, что максимальная прибыль за плановый период Т составит FT(t). Так как начальное состояние to известно, из выражения для FT(t) находим оптимальное решение в начале первого года, потом вытекающее оптимальное решение для второго года и т.д. Обратимся к чи­словому примеру.

Разработать оптимальную политику замены оборудования при усло­виях:

1) стоимость r(t) продукции, производимой с использованием обо­рудования за год, и расходы u(t), связанные с эксплуатацией оборудова­ния, заданы таблицей;

2) ликвидационная стоимость машины не зависит от ее возраста и равна 2;

3) цена нового оборудования со временем не меняется и равна 15;

4) продолжительность планового периода 12 лет.

Итак, s(t) = 2, р = 15, Т = 12.

Запишем функциональные уравнения для F1(t) и Fк(t) при числовых значениях нашего примера:

Пользуясь выражениями (8.9), (8.10), будем последовательно вычис­лять значения максимальной прибыли Fк(t) и записывать их в специаль­ную таблицу (табл. 8.4). Первую строку получим, придавая параметру t в равенстве (8.9) значения 0,1. ,12 и используя исходные данные табл. 8.3. Например, при t = 0

Заметим, что если прибыль от нового оборудования равна прибыли от старого, то старое лучше сохранить еще на год:

Из табл. 8.3 видно, что r(t) – u(t) с ростом t убывает. Поэтому при t > 9 оптимальной будет политика замены оборудования. Чтобы раз­личать, в результате какой политики получается условно-оптимальное значение прибыли, будем эти значения (до t = 9 включительно опти­мальной является политика сохранения) разграничивать жирной лини­ей. Для заполнения второй строки табл. 8.4 используем формулу (8.10). Для к = 2 получаем

Придадим параметру t значения 0,1,2. ,12, значения r(t) и u(t) возьмем из табл. 8.3, а значения F1(t + 1) — из первой строки табл. 8.4. Для третьей строки расчетную формулу получим из равенства (8.10) при к = 3:

и т. д. Заполнив табл. 8.4, данные ее используем для решения постав­ленной задачи. Эта таблица содержит много ценной информации и позволяет решать все семейство задач, в которое мы погружали исходную задачу.

Пусть, например, в начале планового периода имеем оборудование возраста 6 лет. Разработаем «политику замен» на двенадцатилетний пе­риод, доставляющую максимальную прибыль. Информация для этого имеется в табл. 8.4. Максимальная прибыль, которую можно получить за 12 лет при условии, что вначале имелось оборудование возраста 6 лет, находится в табл. 8.4 на пересечении столбца t = 6 и строки F12(t); она составляет 180 единиц.

Читайте также:  Измерительные комплексы учета расхода газа

Значение максимальной прибыли F12(6) = 180 записано справа от ломаной линии, т.е. в области «политики замены». Это значит, что для достижения в течение 12 лет максимальной прибыли в начале первого года оборудование надо заменить. В течение первого года новое обору­дование постареет на год, т.е., заменив оборудование и проработав на нем 1 год, мы за 11 лет до конца планового периода будем иметь обо­рудование возраста 1 год. Из табл. 8.4 берем F11(l) = 173. Это значе­ние располагается в области «политики сохранения», т. е. во втором году планового периода надо сохранить оборудование возраста 1 год, и, про­работав на нем год, за 10 лет до конца планового периода будем иметь оборудование возраста 2 года.

Выясняем, что значение F10(2) = 153 помещено в области сохра­нения. Работаем на оборудовании еще год. Теперь до конца планового периода осталось 9 лет, а возраст оборудования составляет 3 года. Нахо­дим F9(3) = 136. Это область сохранения. Работаем на оборудовании еще год. Его возраст становится равным 4 годам. До конца планового перио­да остается 8 лет. Определяем F8(4) = 120. Это область замен. Заменяем оборудование на новое. Проработаем на нем в течение четвертого года. Оно постареет на год. До конца планового периода останется 7 лет. На­ходим F7(l) = 113. Это область сохранения. Продолжив подобные рассу­ждения, установим, что F6(2) = 93, F5(3) = 76 расположены в области сохранения, F4(4)=60 — в области замен, F3(l) = 53, F2(2) = 33, F1(3) = 16 — в области сохранения. Разработанную политику изобразим следующей цепочкой:

Таким образом, вместо поиска оптимальной «политики замен» на плановый период в 12 лет мы погрузили исходную задачу в семейство подобных, когда период меняется от 1 до 12. Решение ведется по прин­ципу оптимальности для любого состояния системы, независимо от ее предыстории. Оптимальная «политика замен» является оптимальной на оставшееся число лет. Табл. 8.4 содержит информацию для решения и других задач. Из нее можно найти оптимальную стратегию замены оборудования с лю­бым начальным состоянием от 0 до 12 лет и на любой плановый период, не превосходящий 12 лет. Например, найдем «политику замен» на пла­новый период в 10 лет, если вначале имелось оборудование пятилетнего возраста:

Задачу о замене оборудования мы упростили. На практике же дета­лями не пренебрегают. Легко учесть, например, случай, когда остаточная стоимость оборудования s(t) зависит от времени. Может быть принято решение о замене оборудования не новым, а уже проработавшим некото­рое время. Не составляет также труда учесть возможность капитального ремонта старого оборудования. При этом в понятие «состояние» системы необходимо включить время последнего ремонта оборудования. Функция Fk(ti,t2) выражает прибыль за последние к лет планового периода при условии, что вначале имелось оборудование возраста t1, прошедшее ка­питальный ремонт после t2 лет службы. Характеристики г, s и и также будут функциями двух переменных t1 и t2.

Источник

Задача замены оборудования

Чем дольше механизм эксплуатируется, тем выше затраты на его обслуживание и ниже его производительность. Когда срок эксплуатации механизма достигает определенного уровня, может оказаться более выгодной его замена. Задача замены оборудования, таким образом, сводится к определению оптимального срока эксплуатации механизма.

Предположим, что мы занимаемся заменой механизмов на протяжении n лет. В нчале каждого года принимается решение либо об эксплуатации механизма еще один год, либо о замене его новым. Обозначим через и и прибыль от эксплуатации летнего механизма на протяжении года и затраты на его обслуживание за этот же период. Далее пусть s(t) — стоимость продажи механизма, который эксплуатировался t лет. Стоимость приобретения нового механизма остается неизменной на протяжении всех лет и равна I. Элементы модели динамического программирования таковы.

1. Этап i представляется порядковым номером года i,i= 1,2. п.

2. Вариантами решения на i-м этапе (т.е. для i-го года) являются альтернативы: продолжить эксплуатацию или заменить механизм в начале i-го года.

3. Состоянием на i-м этапе является срок эксплуатации t (возраст) механизма к на­чалу i-гo года.

Пусть — максимальная прибыль, получаемая за годы от i до п при условии, что в начале i-го года имеется механизм t-летнего возраста.

Рекуррентное уравнение имеет следующий вид.

где

Компания планирует определить оптимальную политику замены имеющегося в настоящее время трехлетнего механизма на протяжении следующих 4 лет ( n=4), т.е. вплоть до начала пятого года. Приведенная таблица содержит относящиеся к задаче данные. Компания требует замены механизма, который в эксплуатации 6 лет. Стоимость нового механизма равна 100000 долларов.

Возраст (года) Прибыль ($) Стоимость обслуживания ($) Остаточная стоимость s(t) ($)

Определение допустимых значений возраста механизма на каждом этапе является нетривиальной задачей. На рис 4 представлена рассматриваемая задача замены оборудования в виде сети. В начале первого года имеется механизм трехлетнего возраста. Мы можем либо заменить его (3), либо эксплуатировать (С) на протяжении следующего года. Если механизм заменили, то в начале второго года его возраст будет равен одному году, в противном случае его возраст будет 4 года. Такой же подход используется в начале каждого года, начиная со второго по четвертый.

Если однолетний механизм заменяется в начале второго или третьего года, то заменивший его механизм к началу следующего года также будет однолетним. К тому же, в начале 4-го года 6-летний механизм обязательно должен быть заменен, если он еще эксплуатируется; в конце 4-го года все механизмы продаются ( П) в обязательном порядке. На схеме сети также видно, что в начале второго года возможны только механизмы со сроком эксплуатации 1 или 4 года. В начале третьего года механизм может иметь возраст 1, 2 или 5 лет, а в начале четвертого — 1,2,3 или 6 лет.

Решение данной задачи эквивалентно нахождению маршрута максимальной длины (т.е. приносящего максимальную прибыль) от начала первого года к концу четвертого в сети, показанной на рис. 4. При решении этой задачи используем табличную форму записи. (Числовые Данные в таблице кратны тысячам долларов.).

Этап 4.
t C З Оптимум
+ s(t+1)- + s(t)+s(1)- — I Решение
19.0+60-0.6=78.4 20+80+80-0.2-100=79.8 79.8 З
18.5+50-1.2=67.3 20+60+80-0.2-100=59.8 67.3 С
17.2+30-1.5=45.7 20+50+80-0.2-100=49.8 49.8 З
Необходима замена 20+5+80-0.2-100=4.8 4.8 З
Этап 3.
t C З Оптимум
— + + s(t)- — I+ Решение
19.0-0.6+67.3=85.7 20+80-0.2-100+79.8=79.6 85.7 С
18.5-1.2+49.8=67.1 20+60-0.2-100+79.8=59.6 67.1 С
14.0+1.8-4.8=17.0 20+10-0.2-100+79.8=9.6 17.0 С
Этап 2.
t C З Оптимум
— + + s(t)- — I+ Решение
19.0-0.6+67.1=85.5 20+80-0.2-100+85.7=85.5 85.5 С или З
19.0-0.6+67.3=85.7 20+80-0.2-100+79.8=79.6 85.7 З
Этап 2.
T C З Оптимум
— + + s(t)- — I+ Решение
17.2-1.5+35.5=51.2 20+50-0.2-100+85.5=55.3 55.3 З

На рис. 5 показана последовательность получения оптимального решения. В начале первого года оптимальным решением при t = 3 является замена механизма. Следовательно, новый механизм к началу второго года будет находиться в эксплуатации 1 год. При t = 1 в начале второго года оптимальным решением будет либо использование, либо замена механизма. Если он заменяется, то новый к началу третьего года будет находиться в эксплуатации 1 год, иначе механизм будет иметь возраст 2 года. Описанный процесс продолжается до тех пор, пока не будет определено оптимальное решение для четвертого года.

Читайте также:  V Checker V500 портативный многофункциональный автосканер

Следовательно, начиная с первого года эксплуатации механизма, альтернативными оптимальными стратегиями относительно замены механизма будут (3, С, С, 3) и (3, 3, С, С). Общая прибыль составит 55 300 долларов.

1. Постройте сеть и найдите оптимальное решение в задаче из примера 4-3 в каждом из следующих случаев.

a) В начале первого года имеется механизм, находящийся в эксплуатации 2 года.

b) В начале первого года имеется механизм, находящийся в эксплуатации 1 год.

c) В начале первого года куплен новый механизм.

2. Мой тринадцатилетний сын занимается собственным бизнесом — косит газоны десяти клиентам. Каждому клиенту он косит траву три раза в год, получая за один скошенный газон 50 долларов. Он купил косилку за 200 долларов. На протяжении первого года затраты на содержание и использование косилки равны 120 долларов, и через год они увеличиваются на 20%. Одногодичная косилка может быть продана за 150 долларов, и с каждым годом ее стоимость уменьшается на 10%. Мой сын планирует продолжить свой бизнес, пока ему не исполнится 16 лет, и считает, что более выгодно менять косилку через каждые два года. Он объясняет это тем, что цена новой косилки увеличивается за год лишь на 10%. Справедливо ли его решение?

3. Группа ферм владеет трактором двухлетней давности и планирует разработать стратегию его замены на следующие пять лет. Трактор должен эксплуатироваться не менее двух и не более пяти лет. В настоящее время новый трактор стоит 40 000 долларов, и эта цена за год увеличивается на 10%. Текущая годичная стоимость эксплуатации трактора составляет 1300 долларов и, как ожидается, будет увеличиваться на 10% в год.

a) Сформулируйте задачу в виде задачи о кратчайшем пути.

b) Постройте соответствующее рекуррентное уравнение.

c) Определите оптимальную стратегию замены трактора на следующие пять лет.

4. Рассмотрим задачу замены оборудования на протяжении п лет. Цена новой единицы оборудования равна с долларов, а стоимость продажи после t лет эксплуатации равна s(t)=2(n-t) при п>t и нулю — в противном случае. Годичная прибыль от эксплуатации является функцией возраста оборудования t и равна r(t)=r 2 — t 2 при п>t и нулю — в противном случае.

a) Сформулируйте задачу как модель динамического программирования.

b) Определите оптимальную стратегию замены оборудования двухгодичной давности при с=10 000 долларов, считая, что п=5.

5. Решите задачу из предыдущего упражнения, предполагая, что возраст оборудования составляет 1 год и п = 4, с = 6000 долларов, r(t) = n/(n + 1).

Предположим, что в начале каждого из следующих п лет необходимо сделать инвестиции p 1, p 2, . Р п соответственно. Вы имеете возможность вложить капитал в два банка: первый банк выплачивает годовой сложный процент r 1, а второй— r 2. Для поощрения депозитов оба банка выплачивают новым инвесторам премии в виде процента от вложенной суммы. Премиальные меняются от года к году, и для i-го года равны q i 1 и q i 2 в первом и втором банках соответственно. Они выплачиваются в конце года, на протяжении которого сделан вклад, и могут быть инвестированы в один из двух банков на следующий год. Это значит, что лишь указанные проценты и новые деньги могут быть инвестированы в один из двух банков. Размещенный в банке вклад должен находиться там до конца рассматриваемого периода. Необходимо разработать стратегию инвестиций на следующие п лет.

Элементы модели динамического программирования следующие.

1. Этап i представляется порядковым номером года i, i= 1,2. n.

2. Вариантами решения на i-м этапе (для i-го года) являются суммы и , инвестиций в первый и второй банк соответственно.

3. Состоянием х i на i-м этапе является сумма денег на начало i-го года, которые могут быть инвестированы.

Заметим, что по определению . Следовательно,

где Сумма денег которые могут быть инвестированы, включает лишь новые деньги и премиальные проценты за инвестиции, сделанные на протяжении -го года.

Пусть — оптимальная сумма инвестиций для интервала от -го до n-го года при условии, что в начале -го года имеется денежная сумма . Далее обозначим через — накопленную сумму к концу п-гогода при условии, что и ( — ) — объемы инвестиций на протяжении -го года в первый и второй банк соответственно. Обозначая i = 1,2, мы можем сформулировать задачу в следующем виде.

Максимизировать

Так как премиальные за п-й год являются частью накопленной денежной суммы от инвестиций, в выражения для s n добавлены q n 1 и q n 2.

Итак, в данном случае рекуррентное уравнение для обратной прогонки в алгоритме динамического программирования имеет вид

где х i+1 выражается через в соответствии с приведенной выше формулой, af n +1(x n + l) 0.

Предположим, вы хотите инвестировать 4000 долларов сейчас и 2000 долларов 3в начале каждого года, от второго до четвертого, считая от текущего года. Первый банк выплачивает годовой сложный процент 8% и премиальные на протяжении следующих четырех лет в размере 1.8%, 1.7%, 2.1% и 2.5% соответственно. Годовой сложный процент, предлагаемый вторым банком, на 0.2% ниже, чем предлагает первый банк, но его премиальные на 0.5% выше. Задача состоит в максимизации накопленного капитала к концу четвертого года.

Источник



20. Задача об оптимальной стратегии замены оборудования

Известно, что оборудование со временем изнашивается, физически и морально стареет. В процессе эксплуатации падает производительность, и растут эксплуатационные расходы на текущий ремонт. Со временем возникает необходимость замены оборудования, так как его дальнейшая эксплуатация обходится дороже, чем замена. Отсюда задача о замене оборудования может быть сформулирована следующим образом.

Разработать оптимальную стратегию замены оборудования возраста лет в плановом периоде продолжительностью лет, если известны:

– стоимость продукции, производимой в течение года на оборудовании возраста лет ( );

– ежегодные расходы, связанные с эксплуатацией оборудования возраста лет ( );

– остаточная стоимость оборудования возраста лет;

– стоимость нового оборудования и расходы, связанные с установкой, наладкой и запуском.

В начале каждого года имеется две возможности: сохранить оборудование и получить прибыль или заменить его и получить прибыль . Прибыль от использования оборудования в последнем -м году планового периода запишется в следующем виде:

А прибыль от использования оборудования в период с -го по -й год –

Читайте также:  Принцип работы аэрационных установок

Где – прибыль от использования оборудования в период с -го по -й год.

В случае, если оба управления («сохранение» и «замена») приводят к одной и той же прибыли, то целесообразно выбрать управление «сохранение».

Найти оптимальную стратегию замены оборудования возраста 3 года на период продолжительностью 10 лет, если для каждого года планового периода известны стоимость продукции, производимой с использованием этого оборудования, и эксплутационные расходы (таблица 24). Известны также остаточная стоимость, не зависящая от возраста оборудования и составляющая 4 ден. ед., и стоимость нового оборудования, равная 18 ден. ед., не меняющаяся в плановом периоде.

I этап. Условная оптимизация

1-й шаг. . Начнем процедуру условной оптимизации с последнего, десятого года планового периода. Для этого шага состояние системы: = 0, 1, 2, …, 9, 10. Функциональное уравнение (4.5) с учетом числовых данных примера принимает вид

Полученные результаты занесем в таблицу (первая строка таблицы 25).

2-й шаг. . Проанализируем девятый год планового периода. Для второго шага возможны состояния системы = 0, 1, 2, …, 9, 10. Функциональное уравнение (4.6) с учетом числовых данных примера принимает вид

Полученные результаты занесем в таблицу (вторая строка таблицы 25).

Продолжая вычисления описанным способом, постепенно заполняем всю таблицу (см. таблица 25).

II этап. Безусловная оптимизация

В начале исследуемого десятилетнего периода возраст оборудования составляет 3 года. Находим в таблице на пересечении строки и столбца = 3 значение максимальной прибыли — = 169. Найдем теперь оптимальную политику, обеспечивающую эту прибыль. Значение 169 записано слева от жирной черты в области «политик сохранения». Это означает, что в начале первого года принимается решение о сохранении оборудования. К началу второго года возраст оборудования 3 + 1 = 4 года. Расположенная на пересечении строки и столбца = 4 клетка находится слева от жирной черты, следовательно, и второй год нужно работать на имеющемся оборудовании. К началу третьего года возраст оборудования 4 + 1 = 5 лет. Расположенная на пересечении строки и столбца = 5 клетка находится справа от черты, в области «политик замены», следовательно, в начале третьего года следует заменить оборудование. К началу четвертого года возраст оборудования составит один год. Расположенная на пересечении строки и столбца = 1 клетка находится слева от черты, следовательно, четвертый год следует работать на имеющемся оборудовании. Продолжая рассуждать таким образом, последовательно находим = 104, = 85, = 67, = 58, = 37, = 18.

Цепь решений безусловной оптимизации можно изобразить символически следующим образом:

Итак, на оборудовании возраста 3 года следует работать
2 года, затем произвести замену оборудования, на новом оборудовании работать 3-й, 4-й, 5-й и 6-й годы, после чего произвести замену оборудования и на следующем оборудовании работать 7-й, 8-й, 9-й и 10-й годы планового периода. При этом прибыль будет максимальной и составит = 169 ден. ед.

Источник

Задача о замене и ремонте оборудования

Целью решения является определение оптимальных сроков замены и ремонта старого оборудования (станков, зданий и т.п.). Критериями оптимизации могут выступать:

— прибыль от эксплуатации оборудования (задача максимизации);

— суммарные затраты на эксплуатацию в течение планируемого периода (задача минимизации).

Важность задачи обусловлена:

— физическим и моральным износом оборудования;

— ростом производственных затрат, связанных с эксплуатацией и ремонтом старого оборудования;

— снижением производительности труда;

Предположения при построении модели:

— весь срок эксплуатации может быть разбит на n периодов;

— решение о замене принимается в начале каждого периода;

— решение, принимаемое для одного периода, не влияет на решения для других периодов;

— основная характеристика оборудования – его возраст t;

— возможное управление на каждом шаге выбирается качественно, например, X с – сохранить оборудование, X з – заменить, X р – ремонт.

Рассмотрим алгоритм решения на конкретном примере.

Оборудование эксплуатируется в течение 4 лет, после чего продается. В начале каждого года можно либо продолжать эксплуатацию имеющегося оборудования, либо заменить оборудование на новое. Пусть стоимость нового оборудования постоянна и не зависит от года покупки , ликвидная стоимость зависит от возраста t продаваемого оборудования (при его замене на новое) и равна .

Затраты на содержание оборудования в течение года зависят только от возраста t оборудования и равны .

Определить оптимальную стратегию эксплуатации оборудования, чтобы суммарные затраты на эксплуатацию с учетом начальной покупки и заключительной продажи были минимальны.

Весь период эксплуатации разобьем на 4 шага. Таким образом шаг k принимает значения 1, 2, 3, 4. Параметр состояния системы на каждом шаге определяется возрастом оборудования.

В начале первого года оборудование новое, и параметр состояния принимает единственно возможное значение . В дальнейшем, к началу шага параметр состояния равен возрасту оборудования , где .

При выборе управления в конце шага возраст увеличится на 1, т. е. значение параметра состояния .

При управлении в начале шага k оборудование возраста t продается и заменяется новым, т. е. его возраст становится равен нулю: . Тогда через год эксплуатации (в конце шага k) параметр состояния .

Таким образом, уравнения состояния имеют вид:

(30)

Показатель эффективности шага также зависит от выбора управления для каждого возможного значения :

(31)

С учетом исходных данных задачи имеем:

(32)

При вариант управления единственный, поэтому эффективность шага определяем по формуле

. (33)

Далее выполняем пошаговое решение задачи в соответствии с общим алгоритмом решения задач динамического программирования.

Минимизируем условные оптимальные затраты на последнем шаге при k=4 для всех возможных значений .

(34)

В уравнениях Беллмана на этом шаге учтена заключительная продажа оборудования в конце 4-го шага по ликвидной стоимости .

Условные оптимальные затраты на остальных шагах k=3,2,1 вычисляем последовательно по формулам:

(35)

В итоге получим оптимальное значение целевой функции всей задачи:

(36)

Решение задачи о ремонте и замене оборудования удобно проводить на графе. В этом случае задача становится похожа на задачу поиска минимального маршрута.

Граф задачи можно составить из отдельных фрагментов (рис.13), каждый из которых отображает возможный переход из состояния в состояние . По оси абсцисс будем откладывать номер шага k, по оси ординат – возраст оборудования t.

«Точка» на плоскости соответствует началу шага k эксплуатации оборудования возраста t (на схеме «точку» изображаем кружком) . Перемещение к концу шага происходит в зависимости от выбранного в начале шага управления либо в «точку» при управлении , либо в «точку» при управлении .

На каждом векторе перемещения записываются соответствующие затраты в соответствии с формулами (32).

Рис.13. Фрагмент графической схемы решения

Рисуем всю графическую схему (рис.14), состоящую из четырех шагов, с разметкой затрат . Затраты вычисляем по формулам (32) и (33). Внутри кружков в конце последнего шага записываем ликвидную стоимость для каждого возможного возраста оборудования со знаком «–» (рис. 14).

Источник